Mechatronics Systems of Autonomous Transport Vehicle

Article Preview

Abstract:

The purpose of this paper is to present the development and realization of the elaborate mechatronic systems, having its main application in the logistic industry. The innovative, patented steering system is its unique feature. The steerage is based on the torque difference between the drive wheels. This solution allows for the unlimited maneuverability during the motion of the vehicle.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 198)

Pages:

96-101

Citation:

Online since:

March 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Stania, B. Posiadała. Kinematyka prototypowej konstrukcji pojazdu autonomicznego. Mechanik, 12, (2011).

Google Scholar

[2] R.H. Bishop. Mechatronics an Introduction. University of Texas at Austin, 2006, U.S. A.

Google Scholar

[3] R. Siegwart, I. Nourbakhsh. Introduction to Autonomous Mobile Robots. Massachusetts Institute of Technology, (2004).

Google Scholar

[4] S. Lakkad. Modeling and simulation of steering systems for autonomous vehicles". The Florida State University, (2004).

Google Scholar

[5] M Stania, R. Stetter. Mechatronics Engineering on the Example of a Multipurpose Mobile Robot. Solid State Phenomena Vols. 147-149 (2009) pp.61-66.

DOI: 10.4028/www.scientific.net/ssp.147-149.61

Google Scholar

[6] L. Ciabanu, N. Thirer, Modeling vehicles and mobile robots. IEEE Xplore, (2009).

Google Scholar

[7] M. Stania. A mobile platform of an autonomous robot navigating in an unknown.

Google Scholar

[8] environment. MSc Thesis, Silesian University of Technology, Gliwice, Poland, (2007).

Google Scholar

[9] M.J. Giergiel, Z. Hendzel, W. Żylski. Modelowanie i sterowanie mobilnych robotów kołowych. PWN, (2002).

Google Scholar

[10] J. Ota. Multi-agent robot systems as distributed autonomous systems. Advanced Engineering Informatics, Volume: 20, Issue: 1, January, 2006, pp.59-70.

DOI: 10.1016/j.aei.2005.06.002

Google Scholar

[11] Żylski W. Kinematyka i dynamika mobilnych robotów kołowych, Oficyna Wydawnicza Politechniki Rzeszowskiej, (1996).

Google Scholar

[12] R. Carelli, G. Forte, L. Canali, V. Mut, G. Araguás. Autonomous and teleoperation control of a mobile robot. Mechatronics, Volume: 18, Issue: 4, May, 2008, pp.187-194.

DOI: 10.1016/j.mechatronics.2008.01.002

Google Scholar

[13] Giergiel J., Kurc L., Giergiel M.: Mechatroniczne projektowanie robotów inspekcyjnych, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów (2010).

Google Scholar

[14] M. Ashmore, N. Barnes. Omni-drive Robot Motion on Curved Paths: The Fastest Path between Two Points Is Not a Straight-Line. Springer-Verlag London, UK 2002, pp.225-236.

DOI: 10.1007/3-540-36187-1_20

Google Scholar

[15] M. Stania, R. Stetter, A. Paczynski. Lenksystem für Produktionsfahrzeuge auf der Basis von Drehzahl- und Drehmomentdifferenzen. Beitrag zur VDE/VDI-Tagung Elektrisch-mechanische Antriebssysteme (2008).

Google Scholar

[16] M. Stania, R. Stetter, P. Ziemniak. Intelligentes Steuerungssystem für autonome Fahrzeuge in Service- und Produktionsanwendungen. VDI Wissensforum Mechatronik, (2009).

Google Scholar

[17] R. Stetter, A. Paczynski, M. Stania, M. Zajac. Autonomes Fahrzeug mit innovativen, patentierten Lenksystem. Elektromobilausstellung, Aschaffenburg, (2008).

Google Scholar

[18] Patentanmeldung Höhenverstellbares Antriebssystem für mobile Roboter, Aktenzeichen 10 2006 001 055. 8, Deutsches Patent- und Markenamt, München.

Google Scholar