[1]
K. Wang, The use of titanium for medical applications in the USA, Materials Science&EngineeringA 213 (1996) 134-37.
Google Scholar
[2]
L-Ch. Xu, K-Y. Chan, H.H.P. Fang, Application of atomic microscopy in the study of microbiologically influenced corrosion, Materials Characterization 48 (2002) 195-203.
DOI: 10.1016/s1044-5803(02)00239-5
Google Scholar
[3]
G. Voggenreiter, S. Leiting, H. Brauer, P. Leiting, M. Mejetschak, M. Bardenheuer, V.Obertache, Immuno – inflammatory tissue reaction to stainless – steel and titanum plates used for internal of long bones, Biomaterials 24 (2003) 247-57.
DOI: 10.1016/s0142-9612(02)00312-5
Google Scholar
[4]
B. Ben-Nissan, B.A. Latella, A. Bendavid, Biomedical thin films: mechanical properties. In Comprehensiv biomaterials. Methods and analysis. 3 (2011) 63- 69.
DOI: 10.1016/b978-0-08-055294-1.00091-x
Google Scholar
[5]
M. Wilson, D. Devine, Medical implications of biofilms. Cambrige University Press, 2003.
Google Scholar
[6]
D.L. Elbert, Proteomic and advance biochemical technics to study protein adsorption. In Comprehensiv biomaterials. Methods and analysis. 3 (2011) 37- 48.
Google Scholar
[7]
U. Schlegel. S.M. Perren, Surgical aspects of infection involving osteosynthesis implants: implant design and resistance to local infection. Injury, Int. J. Care Injured 37 (2006) 67-73
DOI: 10.1016/j.injury.2006.04.011
Google Scholar
[8]
N. Theologie-Lygidakis, I. Iatrou, G. Eliades, S. Papanikolaou, A retrieval study on morphological and chemical changes of titanium osteosynthesis plates and adjacent tissues. Journal of Cranio-Maxillofacial Surgery 35 (2007) 168–76.
DOI: 10.1016/j.jcms.2007.01.004
Google Scholar
[9]
J.Marciniak, Biomateriały w chirurgii kostnej. Wydawnictwo Politechniki Śląskiej, Gliwice, 2002.
Google Scholar
[10]
P.V. Hatton, I.M. Brook, The role of electron microscopy in the evaluation of biomaterials. European Microscopy and Analysis, 1998, 39-41.
Google Scholar
[11]
M. Epple, E.Baeuerlein, Handbook of biomineralization, WILEY-VCH Verlag GmbH, 2007.
Google Scholar
[12]
G.D. Krischak, F. Gebhart, W. Mohr, V. Krivan, A. Ignatiuk, A. Bech, N.J. Wachter, P. Reuter, M. Arand, L. Kinzl, LE. Claus, Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates, Arch Orthop Trauma Surg,124 (2004) 104 – 13.
DOI: 10.1007/s00402-003-0614-9
Google Scholar
[13]
M. Archibeck, J. Jacobs, K. Roebuck, T. Glant, The Basic Science of Periprosthetic Osteolysis. A Current Concepts Review. J.B.J.S., 82-A (2000) 1478-89.
DOI: 10.2106/00004623-200010000-00014
Google Scholar
[14]
D. Zaffe, C.Bertoldi, U.Konsolo, Accumulation of aluminium in lamer bone after implantation of titanum plater, Ti – 6Al – 4V screws, hydroxyapatite granules, Biomaterials 25 (2004) 3837 – 44.
DOI: 10.1016/j.biomaterials.2003.10.020
Google Scholar
[15]
J. Silberring, A. Kraj (eds.) Proteomics: Introduction to Methods and Applications. 2008 John Wiley & Sons ISBN 978-0-470-05535-9
Google Scholar
[16]
P. Suder, A. Bodzon-Kulakowska, P. Mak, A. Bierczynska-Krzysik, M. Daszykowski, B. Walczak, G. Lubec, J.H. Kotlinska, J. Silberring, The proteomic analysis of primary cortical astrocyte cell culture after morphine administration, J Proteome Res. 8, 10 (2009) 4633-40.
DOI: 10.1021/pr900443r
Google Scholar
[17]
A. Bodzon-Kulakowska, P. Suder, P. Mak, A. Bierczynska-Krzysik, G. Lubec, B. Walczak, J. Kotlinska, J. Silberring, Proteomic analysis of striatal neuronal cell cultures after morphine administration, J Sep Sci. 32, 8 (2009) 1200-10.
DOI: 10.1002/jssc.200800464
Google Scholar