Application of the NanoLC-MS/MS Technique for Protein Analysis of Biofilm on Surface of Mandibular Fixation with X-Ray Detection of Metallic Ions Relocation to the Osseous Tissue

Article Preview

Abstract:

This work presents application of the methods of combined analytical techniques: high performance capillary chromatography and mass spectrometry with a nanoelectrospray ion source (nanoESI) for biochemical analysis of biological films. The layers of biofilm (identification of surface proteins) adsorbed on surfaces of metallic plate fixation and metallic screws surfaces used during treatment of the mandibular fracture were investigated. The obtained results make it possible to determine the protein composition of films found on the plates and screws used for fixation of the mandible. Second part of the work involves microscopic observations of specially prepared parts of tissues contacting directly with time-part implant. We observed changes in the osseous tissues and relocations of the metal ions from the fixations using a Hitachi S-3000N scanning microscope, equipped with an NSS type (Noran System Six) X-ray spectrometer and a freezing table for biological sections. Obtained results indicate the penetration of metal ions from the time-part implant surface into the osseous tissue.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 199)

Pages:

531-537

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Wang, The use of titanium for medical applications in the USA, Materials Science&EngineeringA 213 (1996) 134-37.

Google Scholar

[2] L-Ch. Xu, K-Y. Chan, H.H.P. Fang, Application of atomic microscopy in the study of microbiologically influenced corrosion, Materials Characterization 48 (2002) 195-203.

DOI: 10.1016/s1044-5803(02)00239-5

Google Scholar

[3] G. Voggenreiter, S. Leiting, H. Brauer, P. Leiting, M. Mejetschak, M. Bardenheuer, V.Obertache, Immuno – inflammatory tissue reaction to stainless – steel and titanum plates used for internal of long bones, Biomaterials 24 (2003) 247-57.

DOI: 10.1016/s0142-9612(02)00312-5

Google Scholar

[4] B. Ben-Nissan, B.A. Latella, A. Bendavid, Biomedical thin films: mechanical properties. In Comprehensiv biomaterials. Methods and analysis. 3 (2011) 63- 69.

DOI: 10.1016/b978-0-08-055294-1.00091-x

Google Scholar

[5] M. Wilson, D. Devine, Medical implications of biofilms. Cambrige University Press, 2003.

Google Scholar

[6] D.L. Elbert, Proteomic and advance biochemical technics to study protein adsorption. In Comprehensiv biomaterials. Methods and analysis. 3 (2011) 37- 48.

Google Scholar

[7] U. Schlegel. S.M. Perren, Surgical aspects of infection involving osteosynthesis implants: implant design and resistance to local infection. Injury, Int. J. Care Injured 37 (2006) 67-73

DOI: 10.1016/j.injury.2006.04.011

Google Scholar

[8] N. Theologie-Lygidakis, I. Iatrou, G. Eliades, S. Papanikolaou, A retrieval study on morphological and chemical changes of titanium osteosynthesis plates and adjacent tissues. Journal of Cranio-Maxillofacial Surgery 35 (2007) 168–76.

DOI: 10.1016/j.jcms.2007.01.004

Google Scholar

[9] J.Marciniak, Biomateriały w chirurgii kostnej. Wydawnictwo Politechniki Śląskiej, Gliwice, 2002.

Google Scholar

[10] P.V. Hatton, I.M. Brook, The role of electron microscopy in the evaluation of biomaterials. European Microscopy and Analysis, 1998, 39-41.

Google Scholar

[11] M. Epple, E.Baeuerlein, Handbook of biomineralization, WILEY-VCH Verlag GmbH, 2007.

Google Scholar

[12] G.D. Krischak, F. Gebhart, W. Mohr, V. Krivan, A. Ignatiuk, A. Bech, N.J. Wachter, P. Reuter, M. Arand, L. Kinzl, LE. Claus, Difference in metallic wear distribution released from commercially pure titanium compared with stainless steel plates, Arch Orthop Trauma Surg,124 (2004) 104 – 13.

DOI: 10.1007/s00402-003-0614-9

Google Scholar

[13] M. Archibeck, J. Jacobs, K. Roebuck, T. Glant, The Basic Science of Periprosthetic Osteolysis. A Current Concepts Review. J.B.J.S., 82-A (2000) 1478-89.

DOI: 10.2106/00004623-200010000-00014

Google Scholar

[14] D. Zaffe, C.Bertoldi, U.Konsolo, Accumulation of aluminium in lamer bone after implantation of titanum plater, Ti – 6Al – 4V screws, hydroxyapatite granules, Biomaterials 25 (2004) 3837 – 44.

DOI: 10.1016/j.biomaterials.2003.10.020

Google Scholar

[15] J. Silberring, A. Kraj (eds.) Proteomics: Introduction to Methods and Applications. 2008 John Wiley & Sons ISBN 978-0-470-05535-9

Google Scholar

[16] P. Suder, A. Bodzon-Kulakowska, P. Mak, A. Bierczynska-Krzysik, M. Daszykowski, B. Walczak, G. Lubec, J.H. Kotlinska, J. Silberring, The proteomic analysis of primary cortical astrocyte cell culture after morphine administration, J Proteome Res. 8, 10 (2009) 4633-40.

DOI: 10.1021/pr900443r

Google Scholar

[17] A. Bodzon-Kulakowska, P. Suder, P. Mak, A. Bierczynska-Krzysik, G. Lubec, B. Walczak, J. Kotlinska, J. Silberring, Proteomic analysis of striatal neuronal cell cultures after morphine administration, J Sep Sci. 32, 8 (2009) 1200-10.

DOI: 10.1002/jssc.200800464

Google Scholar