Optical and Electrical Properties of ZnO Thin Films Grown by Sol-Gel Method

Article Preview

Abstract:

The ZnO thin films have been produced on p-type Si and quartz substrates by the spin-coating method and after deposition were heated at different temperatures in the range from 650K to 850K. The photoluminescence (PL) and cathodoluminescence (CL) measurements were carried out at temperature range 12K-350K. I-V, C-V measurements were performed on the Al/ZnO/Si/Al structures at different temperatures. The structural properties of the ZnO thin films were carried out using x-ray and SEM method. The effects of the thickness variation and annealing temperature on the crystallinity parameters were observed. The electrical response of grains, grain boundaries, and contacts of the ZnO film was obtained.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 200)

Pages:

14-21

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.D. McCluskey, M.C. Tarun, S.T. Teklemichael, Hydrogen in oxide semiconductors, Journal of Materials Research 27 (2012) 2190-2198.

DOI: 10.1557/jmr.2012.137

Google Scholar

[2] S. Bandyopadhyay, G.K. Paul, S.K. Sen, Study of optical properties of some sol–gel derived films of ZnO, Solar Energy Materials and Solar Cells 71 (2002) 103.

DOI: 10.1016/s0927-0248(01)00047-2

Google Scholar

[3] Y. Natsume, H. Sakata, Zinc oxide films prepared by sol-gel spin-coating, Thin Solid Films 372 (2000) 30.

DOI: 10.1016/s0040-6090(00)01056-7

Google Scholar

[4] P. Nunes, D. Costa, E. Fortunato, R. Martins, Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering, Vacuum 64 (2002) 293.

DOI: 10.1016/s0042-207x(01)00323-2

Google Scholar

[5] D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Gantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy, Applied Physics Letters 81 (2002) 1830.

DOI: 10.1063/1.1504875

Google Scholar

[6] K. Tominaga, T. Takao, A. Fukushima, T. Moriga, I. Nakabayashi, Amorphous ZnO–In2O3 transparent conductive films by simultaneous sputtering method of ZnO and In2O3 targets, Vacuum 66 (2002) 505.

DOI: 10.1016/s0042-207x(02)00123-9

Google Scholar

[7] N. Naghavi, C. Marcel, L. Dupont, A. Rougier, J.B. Leriche, C. Guery, Structural and physical characterisation oftransparent conducting pulsed laser deposited In2O3–ZnOthin films, Journal of Materials Chemistry 10 (2000) 2315.

DOI: 10.1039/b002094j

Google Scholar

[8] M. Krunks, E. Mellikov, Zinc oxide thin films by the spray pyrolysis method, Thin Solid Films 270 (1995) 33.

DOI: 10.1016/0040-6090(95)06893-7

Google Scholar

[9] T. Shuler, M.A. Aegerter, Optical, electrical and structural properties of sol gel ZnO:Al coatings, Thin Solid Films 351 (1999) 125.

DOI: 10.1016/s0040-6090(99)00211-4

Google Scholar

[10] Y. Natsume, H. Sakata, Electrical and optical properties of zinc oxide films post-annealed in H2 after fabrication by sol–gel process, Materials Chemistry and Physics 78 (2002) 170.

DOI: 10.1016/s0254-0584(02)00314-0

Google Scholar

[11] E.J. Luna-Arredondo, A. Maldonado, R. Asomoza, D.R. Acosta, M.A. Melendez-Lira, M. de la L. Olvera, Indium-doped ZnO thin films deposited by the sol–gel technique, Thin Solid Films 490 (2005) 132.

DOI: 10.1016/j.tsf.2005.04.043

Google Scholar

[12] N.R.S. Farley, C.R. Staddon, L.X. Zhao, K.W. Edmunds, B.L. Gallagher, D.H. Gregory, Sol-gel formation of ordered nanostructured doped ZnO films, Journal of Materials Chemistry 14 (2004) 1087.

DOI: 10.1039/b313271d

Google Scholar

[13] M. Ohyama, H. Kozuka, T. Yoko, Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution, Thin Solid Films Vol. 306 (1997), p.78

DOI: 10.1016/s0040-6090(97)00231-9

Google Scholar

[14] K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Applied Physics Letters 68 (1996) 403.

DOI: 10.1063/1.116699

Google Scholar

[15] B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Applied Physics Letters 79 (2001) 943.

DOI: 10.1063/1.1394173

Google Scholar

[16] V. Srikant and D.R. Clarke, On the optical band gap of zinc oxide, Journal of Applied Physics 83 (1998) 5447.

DOI: 10.1063/1.367375

Google Scholar

[17] R. Loudon, The Raman effect in crystals, Advances in Physics 13 (1964) 423.

Google Scholar

[18] C.A. Arguello, D.L. Rousseau and S.P.S. Porto, First-Order Raman Effect in Wurtzite-Type Crystals, Physical Review 181 (1969) 1351.

DOI: 10.1103/physrev.181.1351

Google Scholar

[19] K.A. Alim, V.A. Fonoberov, M. Shamsa, A.A. Balandin, Micro-Raman investigation of optical phonons in ZnO nanocrystals, Journal of Applied Physics 97 (2005) 124313.

DOI: 10.1063/1.1944222

Google Scholar

[20] Y.W. Chen, Y.C. Liu, S.X. Lu, C.S. Xu, C.L. Shao, C. Wang, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, Optical properties of ZnO and ZnO:In nanorods assembled by sol-gel method, Journal of Chemical Physics 123 (2005) 134701.

DOI: 10.1063/1.2009731

Google Scholar

[21] S. Mridha and D. Basak, Effect of concentration of hexamethylene tetramine on the structural morphology and optical properties of ZnO microrods grown by low-temperature solution approach, Physica Status Solidi A 206 (2009) 1515.

DOI: 10.1002/pssa.200824497

Google Scholar

[22] K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Applied Physics Letters 68 (1996) 403.

DOI: 10.1063/1.116699

Google Scholar

[23] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, Mechanisms behind green photoluminescence in ZnO phosphor powders, Journal of Applied Physics 79 (1996) 7983.

DOI: 10.1063/1.362349

Google Scholar

[24] S.A. Studenikin, N. Golego, M. Cocivera, Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films, Journal of Applied Physics 84 (1998) 2287.

DOI: 10.1063/1.372194

Google Scholar

[25] A. Van Dijken, E.A. Meulenkamp, D. Vanmaekelbergh, A. Meijerink, The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission, Journal of Luminescence 87–89 (2000) 454.

DOI: 10.1016/s0022-2313(99)00482-2

Google Scholar

[26] A. Van Dijken, J. Makkinje, A. Meijerink, The influence of particle size on the luminescence quantum efficiency of nanocrystalline ZnO particles, Journal of Luminescence 92 (2001) 323.

DOI: 10.1016/s0022-2313(00)00262-3

Google Scholar

[27] J.H. Evans-Freeman , M.M. El-Nahass , A.A.M. Farag, A. Elhaji, Current transport mechanisms and deep level transient spectroscopy of Au/n-Si Schottky barrier diodes, Microelectronic Engineering 88 (2011) 3353–3359.

DOI: 10.1016/j.mee.2011.07.001

Google Scholar

[28] H. Deuling, E. Klausmann, A. Goetzberger, Interface states in Si-SiO2 interfaces, Solid-State Electronics 15 5 (1972) 559.

DOI: 10.1016/0038-1101(72)90157-8

Google Scholar

[29] E.H. Nicollian, J.R. Brews, MOS Physics and Technology, Wiley, New York, 1982.

Google Scholar

[30] R. Castagne, A. Vapaille, Description of the SiO2 Si interface properties by means of very low frequency MOS capacitance measurements, Surface Science 28 (1971) 157.

DOI: 10.1016/0039-6028(71)90092-6

Google Scholar