Influence of Overheating Temperature on the Shape of Primary Silicon Crystals in Hypereutectic Al-Si Cast Alloys

Article Preview

Abstract:

The paper presents the results of microscopic examinations of the growth of primary silicon crystals in hypereutectic A390.0 (AlSi17Cu5Mg) silumin. A diagram of the growth of primary silicon crystals in the melt without overheating and superheated to a temperature of 920°C has been presented. From the experimental results obtained on crystal morphologies of primary silicon, different sequences of crystal growth of the primary silicon can be expected. In the silumin without overheating, five-pointed star-shaped particles form, after superheating, the crystals of primary silicon take more compact shapes. This structure provides better mechanical properties and thus increases the area of application of alloys with hypereutectic silicon content.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 203-204)

Pages:

417-422

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.L. Xu, H.Y. Wang, C. Liu, Q.C. Jiang, Crystal Growth 291 (2006), p.540

Google Scholar

[2] B. Yang, F. Wang, J.S. Zhang, Acta Mater. 51 (2003), p.4977

Google Scholar

[3] R.S. Wagner, Acta Mater. 8 (1960), p.57

Google Scholar

[4] D.R. Hamilton, R.G. Seidensticker, J. Appl. Phys. 31 (1960), p.1165

Google Scholar

[5] H. Fredriksson, M. Hillert, N. Lange, J. Inst. Met. 101 (1973), p.285

Google Scholar

[6] K.F. Kobayashi, L.M. Hogan, J. Mater. Sci. 20 (1985), p. (1961)

Google Scholar

[7] C.L. Xu, H.Y. Wang, F. Qiu, Y.F. Yang, Q.C. Jiang, Mat. Sci. Eng. A 417 (2006), p.26

Google Scholar

[8] Yaping Wu, Shujun Wang, Hui Li, Xiangfa Liu, J. Alloys Compd. 477 (2009), p.139

Google Scholar

[9] V.I. Nikitin, Heredity in cast alloys, SamSTU, Samara (in Rus), p. (1995)

Google Scholar

[10] H.S. Dai, X.F. Liu, Mater. Char. 59 (2008), p.1559

Google Scholar

[11] J. Szajnar, T. Wróbel, J. Manuf. Proc. 10 (2008), p.74

Google Scholar

[12] D.H. Lu, et al., J. Mater. Process. Technol. 189 (2007), p.13

Google Scholar

[13] Xiufang Bian, Weimin Wang, Mater. Lett. 44 (2000), p.54

Google Scholar

[14] Y.T. Pei, J.Th. M. De Hosson, Acta Mater. 49 (2001), p.561

Google Scholar

[15] Yu.A. Balakin, M.I. Gladkov, Th. Metall. Proc. 8 (2008), p.730

Google Scholar

[16] C.L. Xu, Q.C. Jiang, Mater. Sci. Eng. A 437 (2006), p.451

Google Scholar

[17] Peijie Li, V.I. Nikitin, E.G. Kandalova, K.V. Nikitin, Mat. Sci. Eng. A332 (2002), p.371

Google Scholar

[18] J. Piątkowski, Sol. State Phen. 176 (2011), p.29

Google Scholar

[19] J. Piątkowski, Arch. of Foundry Eng. 10, issue 2 (2010), p.103

Google Scholar

[20] Z. Górny and J. Sobczak, Non-ferrous metals based novel materials in foundry practice. Copyright by ZA-PIS, Cracov, (2005)

Google Scholar