Influence of the Crystallographic Orientation of CuZn30 Single Crystal on the Portevin-Le Chatelier Effect

Article Preview

Abstract:

Plastic deformation of solid crystals is a complex process, mostly heterogeneous, due to the simultaneous effect of several deformation mechanisms. A dominating deformation mechanism depends on the properties of the material and external coefficients, viz. temperature, stress and strain rate. The applied Bridgman method permitted to obtain single crystal of the CuZn30 alloy adequate for plastic deformation investigations. Single crystal are characterized by selected crystallographic orientations from various areas of the basic triangle. In order to determine the influence of the crystallographic orientation on the Portevin-Le Chatelier effect selected single crystals were compressed at a temperature of 300°C at a strain rate of 10-3 s-1. Experiments confirmed the effect of the crystallographic orientation axis of CuZn30 single crystals on the observed differences in the intensity of stress oscillation on stress-strain curves.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 203-204)

Pages:

406-410

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. H. Cottrell: A note on the Portevin–Le Chatelier effect Philos, Mag. 44, (1953), p.829

Google Scholar

[2] H. Paul, A. Morawiec, J.H. Driver, E. Bouzy: On twinning and shear banding in a Cu–8 at.% Al alloy plane strain compressed at 77 K, International Journal of Plasticity 25 (2009), p.1588

DOI: 10.1016/j.ijplas.2008.10.003

Google Scholar

[3] Y. Estrin, L.P. Kubin: Plastic instabilities: phenomenology and theory, Materials Science and Engineering: A, Volume 137 (1991), p.125

DOI: 10.1016/0921-5093(91)90326-i

Google Scholar

[4] A. Portevin, F. Le Chatelier: Sur un phénomène observé lors de l'essai de traction d'alliages en cours de transformation, Comptes Rendus de l'Académie des Sciences Paris 176, (1923) p.507

Google Scholar

[5] B.J Brindley, P.J Worthington: Serrated yielding in Aluminium-3% Magnesium Acta Metallurgica, Vol.17, Issue 11, (1969), p.1357

DOI: 10.1016/0001-6160(69)90153-9

Google Scholar

[6] B. Grzegorczyk, W. Ozgowicz, E. Kalinowska-Ozgowicz, A. Kowalski, P. Pałka: Metallographic aspects of deformed single crystals of CuZn30 alloys Archives of Materials Science Vol.54, Issue 1 (2012), p.29

DOI: 10.4028/www.scientific.net/ssp.231.49

Google Scholar

[7] U. Messerschmidt, M. Bartsch, Ch. Dietzsch: The flow stress anomaly in Fe–43at%Al single crystals, Intermetallics 14 (2006), p.607

DOI: 10.1016/j.intermet.2005.10.009

Google Scholar

[8] A. Cuniberti, Serrated yielding in long-range ordered 18R Cu–Zn–Al single crystals Intermetallics 14 (2006), p.776

DOI: 10.1016/j.intermet.2005.11.011

Google Scholar

[9] A. Onyszko, W. Bogdanowicz, J. Sieniawski "Structural perfection of a single crystal nickel-based CMSX-4 superalloy ", Solid State Phenomena, Vol. 186 (2012), p.151

DOI: 10.4028/www.scientific.net/ssp.186.151

Google Scholar

[10] Z. Jasieński, A. Piątkowski: Ranges of hardening curve orientation of single crystals of aluminum [135] and [113] in terms of heterogeneity of deformation, Archives of Metallurgy Vol.19, Issue 1, (1974), pp.111-130 (in Polish).

Google Scholar

[11] A. Piątkowski: The influence of heterogeneity of deformation on course of work hardening of tension single crystals of aluminium and the copper, PhD thesis, Cracow, 1987 (in Polish).

Google Scholar

[12] PN-EN 12163:2011 Miedź i stopy miedzi - Pręty ogólnego przeznaczenia (Copper and copper alloys — Rod for general purposes)

Google Scholar