Scaling in the Quantum Hall Regime for a Double Quantum Well Nanostructure in High Magnetic Field

Article Preview

Abstract:

The longitudinal ρxx(B) and Hall ρxy(B) magnetoresistances are investigated in the integer quantum Hall effect regime in n-InGaAs/GaAs double quantum well nanostructures in the magnetic fields B up to 16 T at temperatures T = (0.05-4.2) K before and after IR illumination. The analysis of the quantum Hall effect plateau-plateau transitions based on the scaling hypothesis with regard to electron-electron interaction was carried out.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 215)

Pages:

208-213

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45 (1980) 494.

Google Scholar

[2] H. Levine, S. Libby, and A. M. M. Pruisken, Phys. Rev. Lett. 51 (1983) (1915).

Google Scholar

[3] A. M. M. Pruisken, Phys. Rev. Lett. 61 (1988) 1297; The Quantum Hall Effect, Ed. by R. E. Prange and S. M. Girvin (Springer Verlag, Berlin, 1986; Mir, Moscow, 1989), p.127.

Google Scholar

[4] D. E. Khmel'nitskii, JETP Lett. 38 (1983) 552.

Google Scholar

[5] B. Huckestein, Rev. Mod. Phys. 67 (1995) 367.

Google Scholar

[6] F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80 (2008) 1355.

Google Scholar

[7] P. T. Coleridge, Phys. Rev. B: Condens. Matter 60 (1999) 4493.

Google Scholar

[8] Yu. G. Arapov, I. V. Karskanov, G. I. Harus, V. N. Neverov, N. G. Shelushinina, and M. V. Yakunin, Low Temp. Phys. 35 (2009) 32.

Google Scholar

[9] Yu. G. Arapov, S. V. Gudina, V. N. Neverov, S. M. Podgornykh, and M. V. Yakunin, Low Temp. Phys. 39 (2013) 43.

Google Scholar

[10] S. V. Gudina, Yu. G. Arapov, V. N. Neverov, S. M. Podgornykh, and M. V. Yakunin, Low Temp. Phys. 39 (2013) 374.

Google Scholar

[11] Yu.G. Arapov, S.V. Gudina, A.S. Klepikova, V.N. Neverov, S.G. Novokshonov, G.I. Harus, N.G. Shelushinina, M.V. Yakunin, JETP 144 (2013) 166.

DOI: 10.4028/www.scientific.net/ssp.215.208

Google Scholar

[12] H. P. Wei, D. C. Tsui, A. M. M. Pruisken, Phys. Rev. B 33 (1985) 1488; H. P. Wei, D. C. Tsui, M. A. Paalanen, and A. M. M. Pruisken, Phys. Rev. Lett. 61 (1988) 1294.

DOI: 10.1103/physrevlett.61.1294

Google Scholar

[13] W. Li, G. A. Csa'thy, D. C. Tsui, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 94 (2005) 206807; W. Li, C. L. Vicente, J. S. Xia, W. Pan, D. C. Tsui,L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 102 (2009) 216801.

DOI: 10.1103/physrevlett.102.249901

Google Scholar

[14] S. W. Hwang, H. P. Wei, L. W. Engel, and D. C. Tsui, Phys. Rev. B: Condens. Matter 48 (1993) 11416.

Google Scholar

[15] D.H. Lee and Z. Wang, Phys. Rev. Lett. 76 (1996) 4014.

Google Scholar

[16] A. M. M. Pruisken and M. A. Baranov, Europhys. Lett. 31 (1995) 543.

Google Scholar

[17] A. M. M. Pruisken and I. S. Burmistrov, Ann. Phys. (New York) 322 (2007) 1265; A. M. M. Pruisken and I. S. Burmistrov, JETP Lett. 87 (2008) 220; cond-mat 0907. 0356.

DOI: 10.1134/s0021364008040097

Google Scholar

[18] I. S. Burmistrov, S. Bera, F. Evers, I. V. Gornyi, and A. D. Mirlin, Ann. Phys. (New York) 326 (2011) 1457.

Google Scholar

[19] K. Kodera, A. Endo, S. Katsumoto, Y. Iye, Physica E 34 (2006) 112.

Google Scholar

[20] A. M. M. Pruisken, B. Scoric, and M. A. Baranov, Phys. Rev. B 60 (1999) 16838.

Google Scholar

[21] H. P. Wei, D. C. Tsui, and A. M. M. Pruisken, in High Magnetic Fields in Semiconductor Physics, Ed. by G. Landwehr (Springer Verlag, Berlin, 1987), p.11.

Google Scholar