Evolution of Structure-Scaling and Magnetic Properties during Thermal Loading of Melt-Spun Fe70Cr15B15(Sn) Alloys

Article Preview

Abstract:

We have studied the scaling evolution of the structure and magnetic properties of the melt-spun Fe70Cr15B15(Sn) alloys. The magnetic percolation cluster about the percolation threshold forms at the vitrification stage that is determined by both the kinetics of magnetic and of transport properties and the variation of fractal dimensionality. Alloying by tin of contact surface of ribbon decreases the temperature of the cluster formation. It is shown that the evolution of a fractal ordering affects the kinetics of the physical properties of the alloys. The spectra of fractal dimensionality identify the symmetry character of melt-spun alloys. Fractal dimension Df is reduced at the increasing complexity of hierarchical system.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 215)

Pages:

190-195

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Nicolis, and I. Prigogine, Self-organization in nonequilibrium systems, Wiley, New York, (1977).

Google Scholar

[2] B.B. Mandelbrot, The fractal geometry of nature, Freeman, New York, (1982).

Google Scholar

[3] M. Schroeder, Fractals, chaos, power laws, Freeman, New York, (1991).

Google Scholar

[4] J. Feder, Fractals. Plenum Press, New York, (1988).

Google Scholar

[5] V.S. Ivanova, A.S. Balankin, I. J, Bunin, and A.A. Oksogoev, Synergetics and fractals in material science, Nauka, Moscow, (1994).

Google Scholar

[6] Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64 (1988) 6044.

Google Scholar

[7] H.K. Lachowicz, and A. Slawska-Waniewska, J. Magn. Magn. Mater. 133 (1994) 238.

Google Scholar

[8] P. Marin, M. Lopez, A. Hernando, Y. Iqbal, H.A. Davies and M.R.J. Gibbs, J. Appl. Phys. 92 (2002) 374.

Google Scholar

[9] J. Torrents-Serra, J. Rodríguez-Viejo, and M.T. Clavaguera-Mora, Phys. Rev. B 76 (2007) 214111.

Google Scholar

[10] G. Herzer, Acta Mater. 61 (2013) 718.

Google Scholar

[11] H. G. E. Hentschel, and I. Procaccia, Phys. Rev. A 29 (1984) 1461.

Google Scholar

[12] B.N. Grudin, and V.S. Plotnikov, Processing and simulating of microscopic images, Dal'nauka, Vladivostok, (2010).

Google Scholar

[13] N.I. Chukhrii, V.V. Yudin, A.M. Frolov, and L.A. Yudina, J. Surf. Investig-X-Ray Synchro. 15 (2000) 653.

Google Scholar

[14] G.S. Kraynova, A.M. Frolov, and T.A. Pisarenko, Adv. Mater. Res. 718-720 (2013) 85.

Google Scholar

[15] V.V. Zosimov, and L.M. Lyamshev, Phys. Usp. 38 (1995) 347.

Google Scholar

[16] M.I. Rabinovich, and M.M. Sushchik, Phys. Usp. 33 (1990) 1.

Google Scholar

[17] J.C. Phillips, Phys. Today. 2 (1982) 27.

Google Scholar

[18] G.I. Frolov, Tech. Phys. 49 (2004) 909.

Google Scholar

[19] E.I. Makogina, V.E. Polischuk, E.E. Shmakova, S.V. Yurova, S.N. Zolotarev, V.V. Yudin, Physics, Chemistry and Mechanics of Surfaces. 8 (1987) 117.

Google Scholar

[20] A.I. Olemskoi, and I.V. Koplyk, Phys. Usp. 38 (1995) 1061.

Google Scholar