Implant Surface Finishing Influence on Tissue-Implant Anchoring

Article Preview

Abstract:

The implant surface morphology and microstructure significantly affect cells and tissue quantity formed at the interface. Therefore, the biocompatibility of an implant is just one of many parameters that influence tissue response to metallic implants. In order to understand the importance of the surface morphology and microscopic structures, we must retain first the main problem that limit the application and operation of metal implants - the lack of implant viable anchoring within the tissue. On this basis, experimental studies were carried out on implants having different microstructures and macrostructures that have been used in order to achieve a better long-term anchoring and stability of the implant support.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 216)

Pages:

39-44

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.N. Elias, Y. Oshidab, J. H. Cavalcanti Lima, C. A. Mullere, Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque, J Mech. Behr Biomed Mat, 1 (3) (2008) 234–242.

DOI: 10.1016/j.jmbbm.2007.12.002

Google Scholar

[2] S.I. Voicu, A.C. Nechifor, B. Serban, G. Nechifor, M. Miculescu, Formylated Polysulphone Membranes for Cell Immobilization, J Optoelectron Adv M 9 (2007) 3423-3426.

Google Scholar

[3] S. Bauer, P. Schmuki, K. von der Mark, J. Park, Progress in Materials Science, Engineering biocompatible implant surfaces: Part I: Materials and surfaces, 58 (3) (2013) 261–326.

DOI: 10.1016/j.pmatsci.2012.09.001

Google Scholar

[4] O. Vasile, F. Miculescu, S.I. Voicu, Correlation aspects between morphology, infrared and acoustic absorptions properties of various material, Optoelectron Adv Mat 6 (5-6) (2012) 631-638.

Google Scholar

[5] S.I. Voicu, A. Dobrica, S. Sava, A. Ivan, L. Naftanaila, Cationic surfactants-controlled geometry and domensions of polymeric membrane pores, J Optoelectron Adv M 14 (11-12) (2012) 923-928.

Google Scholar

[6] J.E. Davies, E Ajami, R Moineddin, V.C. Mendesa, The roles of different scale ranges of surface implant topography on the stability of the bone/implant interface, Biomaterials, 34 (14) (2013) 3535–3546.

DOI: 10.1016/j.biomaterials.2013.01.024

Google Scholar

[7] G. Nechifor, S.I. Voicu, A.C. Nechifor, S. Garea, Nanostructure hybrid membrane polysulfone-carbon nanotubes for hemodyalisis, Desalination 241 (2009) 342-348.

DOI: 10.1016/j.desal.2007.11.089

Google Scholar

[8] D.M. Brunette, B. Chehroudi, The Effects Of The Surface Topography Of Micromachined Titanium Substrata On Cell Behavior In Vitro And In Vivo, J. Biom. Eng., 121 (1999) 49 –57.

DOI: 10.1115/1.2798042

Google Scholar

[9] G. E. Stan, A. C. Popa, A. C. Galca, et al, Strong bonding between sputtered bioglass-ceramic films and Ti-substrate implants induced by atomic inter-diffusion post-deposition heat-treatments, Appl. Surf. Sci., 280 (2013) 530-538.

DOI: 10.1016/j.apsusc.2013.05.022

Google Scholar

[10] G. Luo, A.M. Sadegh, H. Alexander, W. Jaffe, D. Scott, S.C. Cowin, The effect of surface roughness on the stress adaptation of trabecular architecture around a cylindrical implant, J Biomechanics, 32 (3) (1999) 275–284.

DOI: 10.1016/s0021-9290(98)00172-9

Google Scholar

[11] G. E. Stan, I. Pasuk, M.A. Husanu, et al, Highly adherent bioactive glass thin films synthetized by magnetron sputtering at low temperature, J Mater Sci-Mater M 22 (12) (2012) 2693-2710.

DOI: 10.1007/s10856-011-4441-1

Google Scholar

[12] G. Mendonçaa, D.B.S. Mendonçaa, F.J.L. Aragãoa, L.F. Cooper, Advancing dental implant surface technology – From micron- to nanotopography, Biomaterials, 29 (28) (2008) 3822–3835.

DOI: 10.1016/j.biomaterials.2008.05.012

Google Scholar

[13] F Grizon, E Aguado, G Huré, M. F Baslé, D Chappard, Enhanced bone integration of implants with increased surface roughness: a long term study in the sheep, J Dentistry, 30 (5–6) (2002) 195–203.

DOI: 10.1016/s0300-5712(02)00018-0

Google Scholar

[14] G. E. Stan, S. Pina, D.U. Tulyaganov, et al, Biomineralization capability of adherent bio-glass films prepared by magnetron sputtering, J Mater Sci-Mater M 21 (10) (2010) 2899-2899.

DOI: 10.1007/s10856-010-4040-6

Google Scholar

[15] De Lange G. De Putter C., Structure Of The Bone Interface To Dental Implants In Vivo, J Oral Implant, 19 (1993) 123-35.

Google Scholar