Semisolid Metals: A Suspension with Non-Newtonian Liquid Matrix

Article Preview

Abstract:

The improvement of mathematical models for semisolid alloy flow properties requires profound understanding of the underlying physical nature. To date, it is commonly accepted that the shear thinning behaviour of these suspensions is caused by the solid phase microstructure, while the liquid phase is assumed to be Newtonian with a viscosity in the lower mPas-range. Recent measurements however, demonstrate non-Newtonian behaviour of fully liquid metals with pronounced shear thinning and high viscosities (multiple Pas) in the low shear-rate range. By gathering and analysing rheological measurement data of various alloys (Sn14.2%Pb, A356 and X210CrW12), the relevance of the new findings for semisolid metals is investigated. The results indicate that the previously unexamined non-Newtonian flow behaviour of the liquid matrix has, besides the solid fraction, the most dominant influence on the shear thinning behaviour of semisolid alloys. The influences of shear-rate and solid fraction are nearly independent of each other which allow the construction of master-curves; a general flow curve for the suspension where the solid fraction is considered by a scaling factor. Consequently, a modelling approach is suggested in which the dependency of solid fraction is considered independently of the shear-rate.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 217-218)

Pages:

166-173

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. G. N'guyen, D. Favier, and M. Suery, Theor. and experimental study of the isotherm. mechanical behaviour of alloys in the semi-solid state Int. J. Plast., 10, 1994, 663–693.

DOI: 10.1016/0749-6419(94)90028-0

Google Scholar

[2] M. Modigell, J. Koke, and J. Petera, Proc. 5th Int. Conf. on Semi-solid processing of alloys and composites, Golden, Colorado School of Mines, 1998, p.317–326.

Google Scholar

[3] J. -C. Gebelin: PhD thesis, INPG, Grenoble, France, (2000).

Google Scholar

[4] M. Malik, G. Lambotte, M. S. Hamed, P. Chatrand, S. Shankar, How to measure viscosity of liquid aluminum alloys, TMS Orlando 2007, pp.43-50.

Google Scholar

[5] M. Malik et al., Rotational rheometry of liquid metal sys.: Meas. geometry selection and flow curve analysis, J. of N. -Newt. Fluid Mech., 165, 13–14, 2010, p.733–742.

DOI: 10.1016/j.jnnfm.2010.03.009

Google Scholar

[6] M. Jeyakumar, M. Hamed, S. Shankar, Rheology of liquid metals and alloys, Journal of Non-Newtonian Fluid Mechanics, 166, 2011, p.831–838.

DOI: 10.1016/j.jnnfm.2011.04.014

Google Scholar

[7] V. Varsanl, Z. Fan, Non-Newt. behav. of liquid metals, TMS, Orlando 2007, pp.67-76.

Google Scholar

[8] C. Desgranges, J. Delhommelle, Visc. of liquid iron under high press. and hightemp.: equilib. and non-equi. Mol. dyn. simulation, Phys. Rev. B 76, 2007, pp.172102-06.

Google Scholar

[9] Y. Qi et al., Viscosities of liquid metal alloys from non-equilib. molecular dynamics, Journal of Computer-Aided Materials Design 8, 2001, pp.233-43.

Google Scholar

[10] I. M. Krieger, T. J. Dougherty, A mechanism for flow in suspensions for rigid spheres, Transactions of the society of rheology III, 1959, pp.157-152.

DOI: 10.1122/1.548848

Google Scholar

[11] S. Harboe, M. Modigell: Yield stress in semi-solid alloys - the dependency on time and deformation history, Key Engineering Materials, 554-557, 2013, pp.523-535.

DOI: 10.4028/www.scientific.net/kem.554-557.523

Google Scholar

[12] M. Modigell, T. Volkmann, C. Zang, A high-precision rotational rheometer for temperatures up to 1700°C, Solid State Phenomena-Semi-Solid Processing of Alloys and Composites XII, 192-193(B), 2013, pp.359-364.

DOI: 10.4028/www.scientific.net/ssp.192-193.359

Google Scholar

[13] M. Modigell, J. Koke, Flow behaviour of semi-solid metal alloys, Journal of non-Newtonian fluid mechanics, 112, 2003, pp.141-160.

DOI: 10.1016/s0377-0257(03)00080-6

Google Scholar

[14] S. Harboe, M. Modigell, The Influence of Particle Size on Viscosity in Thixo Material. Key Engineering Materials, 504 - 506, 2012, pp.333-338.

DOI: 10.4028/www.scientific.net/kem.504-506.333

Google Scholar

[15] M. Modigell, A. Pola, Modeling of shear induced coarsening effects in semi-solid alloys, Transactions of Nonferrous Metals Society of China, 20, 9, 2010, pp.1696-1701.

DOI: 10.1016/s1003-6326(09)60360-5

Google Scholar

[16] M. Modigell, S. Harboe, Wall slip of semi-solid A356 in Couette rheometers, Esaform Conference 2011, Belfast, UK, (2011).

DOI: 10.1063/1.3589659

Google Scholar

[17] P. Carreau. Rheol. equations from molec. netw. theories, J. Rheol., 16, 1972, p.99–127.

Google Scholar

[18] A. R. A. Mclelland, PhD Thesis, University of Sheffield, (1993).

Google Scholar

[19] M. Avedesian, H. Baker, Magnesium and Magnesium Alloys, ASM International, (1999).

Google Scholar

[20] L. Li, X. Zhou, J. Chen, A Rheological Model of Semisolid Magnesium Alloy Slurries, Materials Science Forum Vols. 488-489, pp.333-336, (2005).

DOI: 10.4028/www.scientific.net/msf.488-489.333

Google Scholar

[21] L.S. Turng, K.K. Wang, Rheological behaviour and modelling of semi-solid Sn-15%Pb alloy, J. Mat. Sc. 26, 1991, pp.2173-2183.

DOI: 10.1007/bf00549185

Google Scholar

[22] M. Modigell, C. Zang, A. Pola, M. Suéry, Investigation of correlations between shear history and microstructure of semi-solid alloys, Solid State Phenomena Vols. 192-193 (2013) pp.251-256.

DOI: 10.4028/www.scientific.net/ssp.192-193.251

Google Scholar