Modelling of Extrusion Process for Aluminium A356 Alloy

Article Preview

Abstract:

In the present work, a model is developed to study extrusion process of A356 alloy in semi-solid state. The distinct rheology of the semisolid alloy reduces energy necessity during extrusion process. Accordingly, a proper rheological model of the alloy is considered in the model towards a detailed study of the process. A combination of analytical and numerical solutions is considered for solving the governing equations. The work finally predicts distribution of velocity and shear stress of the alloy under shear in the considered domain. It also predicts the energy requirement during the extrusion process. It is demonstrated that for semisolid extrusion, reasonably less energy is required as compared to a conventional extrusion process Keywords: Extrusion, semi-solid alloy, apparent viscosity, extrusion power

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 217-218)

Pages:

188-194

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. C. Flemings, R.G. Riek, K.P. Young, Rheocasting, Mater. Sci. Eng. 25 (1976) 103–117.

Google Scholar

[2] M.C. Flemings, Behavior of metal alloys in semisolid state, Metall. Trans. A 22(1991) 957–981.

DOI: 10.1007/bf02661090

Google Scholar

[3] S. A. Sadough, M. R. Rahaman, and V. Pouyafar, Rheological behavior, microstructure and hardness of A356 aluminum alloy in semisolid state using backward extrusion process, J. of Trans. Nonferrous Met. Soc. China. 20 (2010) 906-910.

DOI: 10.1016/s1003-6326(10)60604-8

Google Scholar

[4] T. Rattanochaikul, S. Janudom, N. Memongkol, and J. Wannasin, Development of aluminum rheo-extrusion process using semi-solid slurry at low solid fraction, J. of Trans. Nonferrous Met. Soc. China. 20 (2010) 1763-1768.

DOI: 10.1016/s1003-6326(09)60371-x

Google Scholar

[5] M. R. Jafari, S. M. Zebarjad and F. Kolahan, Simulation of thixoformability of A356 aluminum alloy using finite volume method, Materials Science and Engineering. A 454–455 (2007) 558–563.

DOI: 10.1016/j.msea.2006.11.124

Google Scholar

[6] A. Ghosh and A. K. Mallik, Manufacturing Science, 2nd Edition, East-West Private Ltd., New Delhi, (1997).

Google Scholar

[7] N. Barman, P. Kumar and P. Dutta, J. of Materials Processing Tech., 209 (2009)5912.

Google Scholar

[8] A. N. Alexandrou, On the Modeling of semisolid suspentions, Solid State Phenomena, 141-143 (2008) 17-23.

DOI: 10.4028/www.scientific.net/ssp.141-143.17

Google Scholar

[9] S. Simlandi, N. Barman, and H. Chattopadhyay, Study on rheological behaviour of A356 alloy during solidification in presence of stirring, Transactions IIM. 65(6) (2012) 809-814.

DOI: 10.1007/s12666-012-0204-z

Google Scholar

[10] S. Simlandi, N. Barman, and H. Chattopadhyay, Study of thixotropic property of A356 alloy in semisolid state, Solid State Phenomena. 192-193 (2013) 335-340.

DOI: 10.4028/www.scientific.net/ssp.192-193.335

Google Scholar

[11] P. Das, S.K. Samanta, H. Chattopadhyay, N. Barman, N., P. Datta, Rheological characterization of semi-solid A356 aluminium alloy, Solid State Phenomena 192-193 (2013), 329-334.

DOI: 10.4028/www.scientific.net/ssp.192-193.329

Google Scholar

[12] H. V. Atkinson, Modelling the semisolid processing of metallic alloys, Progress in Materials Science. 50 (2005) 341–412.

DOI: 10.1016/j.pmatsci.2004.04.003

Google Scholar

[13] G. R. Burgos, N. Andreas, A. N. Alexandrou, V. Entov, Thixotropic rheology of semisolid metal suspensions, Journal of Materials Processing Technology. 110 (2001) 164-176.

DOI: 10.1016/s0924-0136(00)00731-7

Google Scholar