Intelligent Machine Tool – A Thermal Diagnostic System for a CNC Pretensioned Ball Screw

Article Preview

Abstract:

The paper presents a compensation system of thermal deformation for conventional feed axes applied in CNC machine tools allowing for an effective reduction in the impact of heat generated during its operation on the positioning accuracy of the axis. The result has been achieved by equipping feed screws with thermistor temperature sensors. Wiring sensors was led out through an axial bore in the screw and through a rotating electrical connector to an acquisition device coupled with the control system of the CNC machine. An algorithm based on neural networks was implemented in the machine control system, which allows for the online calculation and compensation of heat deformation of feed screws. The algorithm takes into account a variation of thermal deformation values as a function of the table position and the current distribution of the temperature field of the screw and machine. The paper presents a user-friendly method for implementing algorithms containing neural networks in the machine control system. The proposed compensation method has been verified by measuring the linear accuracy of the feed axis positioning. The obtained results confirm the effectiveness of the proposed method in reducing the impact of thermal deformation errors on the positioning accuracy of the axis in CNC machine tools.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 220-221)

Pages:

491-496

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Pajor, K. Stateczny, Project of a manipulation system for manual movement of CNC machine tool body units, Advances in Manufacturing Science and Technology 35(4) (2011) 33–41.

Google Scholar

[2] M. Grudziński, K. Okarma, M. Pajor, M. Tecław, Visualization of the workpieces on the CNC machines using the virtual camera based on the sub-pixel IBR method, Solid State Phenomena 199 (2013) 253–258.

DOI: 10.4028/www.scientific.net/ssp.199.253

Google Scholar

[3] M. Pajor, K. Marchelek, Aspekty tworzenia koncepcji obrabiarki inteligentnej, Inżynieria Maszyn 16(1–2) (2011) 9–37.

Google Scholar

[4] P. Majda, Modeling of geometric errors of linear guideway and their influence on joint kinematic error in machine tools, Precision Engineering 36(3) (2012) 369–378.

DOI: 10.1016/j.precisioneng.2012.02.001

Google Scholar

[5] J. Bryan, International status of thermal error research, CIRP Annals, 39(2) (1990) 645–656.

DOI: 10.1016/s0007-8506(07)63001-7

Google Scholar

[6] R. Ramesh, M. A. Mannan, A. N. Po, Thermal error measurement and modeling in machine tools. Part I. Influence of varying operation condition, Int. J. Mach. Tools Manuf. 43 (2003) 391–404.

DOI: 10.1016/s0890-6955(02)00263-8

Google Scholar

[7] E. Abele, Y. Altintas, C. Brecher, Machine tool spindle units, CIRP Annals – Manufacturing Technology 59(2) (2010) 781–802.

DOI: 10.1016/j.cirp.2010.05.002

Google Scholar

[8] J. Mayr, et al. Thermal issues in machine tools, CIRP Annals – Manufacturing Technology 61 (2012) 771–791.

Google Scholar

[9] T. A. Harris, Rolling Bearing Analysis, 2nd ed., John Wiley & Sons, New York, (1984).

Google Scholar

[10] T. Otko, W. Zębala, Ł. Ślusarczyk, Badania wpływu dokładności układów pomiarowych drogi w obrabiarkach CNC na dokładność obróbki, Inżynieria Maszyn 15(3) (2010) 102–113.

Google Scholar

[11] A. C. Okafor, Y. M. Ertekin, Vertical machining center accuracy characterization using laser interferometer Part 1. Linear positional errors, Journal of Materials Processing Technology 105 (2000) 394–406.

DOI: 10.1016/s0924-0136(00)00661-0

Google Scholar

[12] C. -H. Wu, Y. -T. Kung, Thermal analysis for the feed drive system of a CNC machine center, International Journal of Machine Tools & Manufacture 43 (2003) 1521–1528.

DOI: 10.1016/j.ijmachtools.2003.08.008

Google Scholar

[13] Z. Z. Xu, X. J. Liu, H. K. Kim, J. H. Shin, S. K. Lyu, Thermal error forecast and performance evaluation for an air-cooling ball screw system, International Journal of Machine Tools and Manufacture 51(7–8) (2011) 605–611.

DOI: 10.1016/j.ijmachtools.2011.04.001

Google Scholar

[14] M. Pajor, J. Zapłata, A criterion determining the number of thermal sensors in a system compensating thermal deformations of CNC machine feed screw, Advances in Manufacturing Science and Technology 36(4) (2012) 73–85.

Google Scholar

[15] M. Pajor, J. Zapłata, Compensation of thermal deformations of the feed screw in a CNC machine tool, Advances in Manufacturing Science and Technology 35(4) (2011) 9–17.

Google Scholar

[16] F. D. Foresee, M.T. Hagan, Gauss-Newton approximation to Bayesian regularization, in: Proceedings of the 1997 International Joint Conference on Neural Networks, 1997, p.1930–(1935).

DOI: 10.1109/icnn.1997.614194

Google Scholar

[17] K. Pietrusewicz, M. Pajor, Ł. Urbański, Dynamic corrections of the tooling errors possibilities within the mechatronic actuator for motors with permanent magnets, Archiwum Technologii Maszyn i Automatyzacji 31(2) (2011) 181–190.

Google Scholar

[18] S. Domek, M. Pajor, K. Pietrusewicz, Ł. Urbański, Eksperymentalny system OCEAN otwartego sterowania napędami liniowymi, Inżynieria Maszyn 16(1–2) (2011) 40–49.

Google Scholar

[19] M. Pajor, J. Zapłata, Układ kompensacji on-line odkształceń cieplnych śruby pociągowej osi posuwu CNC, Modelowanie Inżynierskie 45 (2012) 116–121.

Google Scholar

[20] Information on http: /www. br-automation. com.

Google Scholar

[21] Information on http: /www. mathworks. com/products/simulink.

Google Scholar

[22] W. Ptaszyński, L. Różański, R. Staniek, Badanie odkształceń termicznych pionowych frezarek sterowanych numerycznie i sposoby ich kompensacji, Archiwum Technologii Maszyn i Automatyzacji 22(2) (2003) 59–72.

Google Scholar

[23] W. Ptaszyński, Badanie odkształceń termicznych pionowych frezarek sterowanych numerycznie i sposoby ich kompensacji [Investigation of thermal deformations and their compensation in NC vertical milling machines], Archiwum Technologii Maszyn i Automatyzacji 22(2) (2002).

Google Scholar