Multiaxial Fatigue Life Assessment Method Based on the Mean Value of Modified Second Invariant of the Deviatoric Stress

Article Preview

Abstract:

Stress invariants approach to the multiaxial fatigue life estimation is generally based on the root mean square value of second invariant of the deviatoric stress amplitude and the value of hydrostatic stress. Such an approach omits a significant part of the information about multiaxial load history. It is particularly noticeable in case of non-proportional loadings, which lead to a reduction of fatigue life (i.e. [1–3]). In this work a new method based on the mean value of modified second invariant of the deviatoric stress has been presented.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 224)

Pages:

15-20

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Rozumek, Z. Marciniak, The investigation of crack growth in specimens with rectangular cross-sections under out-of-phase bending and torsional loading, Int J Fatigue 39 (2012) 81-87.

DOI: 10.1016/j.ijfatigue.2011.02.013

Google Scholar

[2] C.M. Sonsino, Influence of material's ductility and local deformation mode on multiaxial fatigue response. Int J Fatigue 33 (2011) 930-947.

DOI: 10.1016/j.ijfatigue.2011.01.010

Google Scholar

[3] Q. Yu, J. Zhang, Y. Jiang, Q. Li, Multiaxial fatigue of extruded AZ61A magnesium alloy, Int J Fatigue 33 (2011) 437-447.

DOI: 10.1016/j.ijfatigue.2010.09.020

Google Scholar

[4] B.R. You, S.B. Lee, A critical review on multiaxial fatigue assessments of metal, Int J Fatigue 18 (1996) 235-244.

DOI: 10.1016/0142-1123(96)00002-3

Google Scholar

[5] I.V. Papadopoulos, P. Davoli, C. Gorla, M. Filippini, A. Bernasconi, A comparative study of multiaxial high-cycle fatigue criteria for metals, Int J Fatigue 19 (1997) 219-235.

DOI: 10.1016/s0142-1123(96)00064-3

Google Scholar

[6] A. Karolczuk, E. Macha, A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials, Int J Fract 134 (2005) 267-304.

DOI: 10.1007/s10704-005-1088-2

Google Scholar

[7] Ł. Pejkowski, D. Skibicki, Criteria Evaluation for Fatigue Life Estimation under Proportional and Non-Proportional Loadings, Mater Sci Forum 726 (2012) 189-192.

DOI: 10.4028/www.scientific.net/msf.726.189

Google Scholar

[8] Ł. Pejkowski, D. Skibicki, Integral fatigue criteria evaluation for life estimation under uniaxial combined proportional and non-proportional loadings, J Theor Appl Mech 50 (2012) 1073-1086.

DOI: 10.4028/www.scientific.net/msf.726.189

Google Scholar

[9] Ł. Pejkowski, D. Skibicki, Modification of Zenner and Liu Criterion due to Non-Proportionality of Fatigue Load by Means of MCE Approach, Key Eng Mater 598 (2014) 201-206.

DOI: 10.4028/www.scientific.net/kem.598.201

Google Scholar

[10] A. Cristofori, L. Susmel, R. Tovo, A stress invariant based criterion to estimate fatigue damage under multiaxial loading, Int J Fatigue 30 (2008) 1646-1658.

DOI: 10.1016/j.ijfatigue.2007.11.006

Google Scholar

[11] H. Zenner, A. Simburger, On the fatigue limit of ductile metals under complex multiaxial loading, Int J Fatigue 22 (2000) 137-145.

DOI: 10.1016/s0142-1123(99)00107-3

Google Scholar

[12] B. Li, L. Reis, M. de Freitas, Comparative study of multiaxial fatigue damage models for ductile structural steels and brittle materials, Int J Fatigue 31 (2009) 1895-(1906).

DOI: 10.1016/j.ijfatigue.2009.01.006

Google Scholar

[13] F.C. Castro, J.A. Araújo, E.N. Mamiya, N. Zouain, Remarks on multiaxial fatigue limit criteria based on prismatic hulls and ellipsoids, Int J Fatigue 31 (2009) 1875-1881.

DOI: 10.1016/j.ijfatigue.2009.01.004

Google Scholar

[14] M.A. Meggiolaro, J.T.P. de Castro, An improved multiaxial rainflow algorithm for non-proportional stress or strain histories - Part I: Enclosing surface methods, Int J Fatigue 42 (2012) 217-226.

DOI: 10.1016/j.ijfatigue.2011.10.014

Google Scholar

[15] M. Kurek, T. Łagoda, Comparison of the fatigue characteristics for some selected structural materials under bending and torsion, Mater Sci 47 (2011) 334-344.

DOI: 10.1007/s11003-011-9401-x

Google Scholar

[16] Ł. Pejkowski, D. Skibicki, J. Sempruch, High cycle fatigue behavior of austenitic steel and pure copper under uniaxial, proportional and non-proportional loading, Stroj Vestn - J Mech Eng (2014).

DOI: 10.5545/sv-jme.2013.1600

Google Scholar

[17] T. Nishihara, M. Kawamoto, The strength of metals under combined alternating bending and torsion with phase difference, Trans Japan Soc Mech Eng 12 (1947) 44-53.

DOI: 10.1299/kikai1938.12.44

Google Scholar

[18] A. Bernasconi, S. Foletti, I.V. Papadopoulos, A study on combined torsion and axial load fatigue limit tests with stresses of different frequencies, Int J Fatigue 30 (2008) 1430-1440.

DOI: 10.1016/j.ijfatigue.2007.10.003

Google Scholar

[19] D.L. McDiarmid, Multiaxial fatigue life prediction using a shear-stress based critical plane failure criterion, Fatigue Des 131 (1992) 21-33.

DOI: 10.1016/0142-1123(96)81254-0

Google Scholar