Comparison of C45 Steel Fatigue Characteristics Carried out at Controlled Stress and Energy Parameter, Subjected to Fully Reversed Bending

Article Preview

Abstract:

The work presents fatigue characteristics of C45 steel that have been obtained at controlled energy parameter and nominal stress. The tested material has been subjected to fully reversed bending on MZGS-100Ph fatigue test stand.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 224)

Pages:

33-38

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Skibicki, Experimental verification of fatigue loading nonproportionality model, Journa of Theoretical and Applied Mechanics. 45(2) (2007) 337-348.

Google Scholar

[2] G. Golanski, S. Mrozinski, K. Werner, Low cycle fatigue life of martensitic cast steel after ageing, Materials Science Forum. 726 (2012) 3-10.

DOI: 10.4028/www.scientific.net/msf.726.3

Google Scholar

[3] E. Marcisz, A. Niesłony, T. Łagoda, Concept of fatigue for determining characteristics of materials with strengthening, Materials Science Forum. 726 (2012) 43-48.

DOI: 10.4028/www.scientific.net/msf.726.43

Google Scholar

[4] P. Yasniy, V. Hutsaylyuk, Loading history influence on the brittle fracture resistance of the heat - Resistant steels, Progress in Mechanical Behaviour of Materials. 1 (1999) 155-159.

Google Scholar

[5] J. Mierzyński, V. Hutsaylyuk, Fatigue crack growth in the D16CzATW aluminium alloy in the presence of a calibrated hole under simple bending, Int. J. of Fatigue. 39 (2012) 54-60.

DOI: 10.1016/j.ijfatigue.2011.04.003

Google Scholar

[6] ASTM E 606-92. Standard practice for strain-controlled fatigue testing, in: Annual Book of ASTM Standards, Vol. 03. 01. Philadelphia, 2003, p.580 – 594.

Google Scholar

[7] ASTM E 739-91. Standard practice for statistical analysis of linear or linearized stress-life (S-N) and strain-life (e-N) fatigue data, in: Annual Book of ASTM Standards, Vol. 03. 01. Philadelphia, 2003, p.658 – 664.

Google Scholar

[8] E. Marcisz, Z. Marciniak, D. Rozumek, E. Macha, Energy fatigue characteristic of C45 steel subjected to cyclic bending, Key Engineering Materials. 298 (2014) 147-152.

DOI: 10.4028/www.scientific.net/kem.598.147

Google Scholar

[9] D. Rozumek, Z. Marciniak, C. T. Lachowicz, The energy approach in the calculation of fatigue lives under non-proportional bending with torsion, Int. J. of Fatigue. 32(8) (2010) 1343 – 1350.

DOI: 10.1016/j.ijfatigue.2010.02.007

Google Scholar

[10] S. S. Manson, Behaviour of materials under conditions of thermal stress. NACA TN-2933, (1953).

Google Scholar

[11] L. F. Coffin, A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME. 76 (1954) 931-950.

DOI: 10.1115/1.4015021

Google Scholar

[12] D. Rozumek, Z. Marciniak, Control system of the fatigue stand for material tests under combined bending with torsion loading and experimental results, Mechanical Systems and Signal Processing. 22(6) (2008) 1289-1296.

DOI: 10.1016/j.ymssp.2007.09.009

Google Scholar

[13] D. Rozumek, Z. Marciniak, The investigation of crack growth in specimens with rectangular cross-sections under out-of-phase bending and torsional loading. Int. J. of Fatigue. 39 (2012) 81-87.

DOI: 10.1016/j.ijfatigue.2011.02.013

Google Scholar

[14] E. Macha, J. Słowik, R. Pawliczek, Energy based characterization of fatigue behavior of cyclically unstable materials, Solid State Phenomena. 147-149 (2009) 512-517.

DOI: 10.4028/www.scientific.net/ssp.147-149.512

Google Scholar

[15] K. Smith, P. Watson, T. Topper, A stress-strain function for the fatigue of metals. J. Materials. 5 (1970) 767-779.

Google Scholar