[1]
D. Skibicki, Experimental verification of fatigue loading nonproportionality model, Journa of Theoretical and Applied Mechanics. 45(2) (2007) 337-348.
Google Scholar
[2]
G. Golanski, S. Mrozinski, K. Werner, Low cycle fatigue life of martensitic cast steel after ageing, Materials Science Forum. 726 (2012) 3-10.
DOI: 10.4028/www.scientific.net/msf.726.3
Google Scholar
[3]
E. Marcisz, A. Niesłony, T. Łagoda, Concept of fatigue for determining characteristics of materials with strengthening, Materials Science Forum. 726 (2012) 43-48.
DOI: 10.4028/www.scientific.net/msf.726.43
Google Scholar
[4]
P. Yasniy, V. Hutsaylyuk, Loading history influence on the brittle fracture resistance of the heat - Resistant steels, Progress in Mechanical Behaviour of Materials. 1 (1999) 155-159.
Google Scholar
[5]
J. Mierzyński, V. Hutsaylyuk, Fatigue crack growth in the D16CzATW aluminium alloy in the presence of a calibrated hole under simple bending, Int. J. of Fatigue. 39 (2012) 54-60.
DOI: 10.1016/j.ijfatigue.2011.04.003
Google Scholar
[6]
ASTM E 606-92. Standard practice for strain-controlled fatigue testing, in: Annual Book of ASTM Standards, Vol. 03. 01. Philadelphia, 2003, p.580 – 594.
Google Scholar
[7]
ASTM E 739-91. Standard practice for statistical analysis of linear or linearized stress-life (S-N) and strain-life (e-N) fatigue data, in: Annual Book of ASTM Standards, Vol. 03. 01. Philadelphia, 2003, p.658 – 664.
Google Scholar
[8]
E. Marcisz, Z. Marciniak, D. Rozumek, E. Macha, Energy fatigue characteristic of C45 steel subjected to cyclic bending, Key Engineering Materials. 298 (2014) 147-152.
DOI: 10.4028/www.scientific.net/kem.598.147
Google Scholar
[9]
D. Rozumek, Z. Marciniak, C. T. Lachowicz, The energy approach in the calculation of fatigue lives under non-proportional bending with torsion, Int. J. of Fatigue. 32(8) (2010) 1343 – 1350.
DOI: 10.1016/j.ijfatigue.2010.02.007
Google Scholar
[10]
S. S. Manson, Behaviour of materials under conditions of thermal stress. NACA TN-2933, (1953).
Google Scholar
[11]
L. F. Coffin, A study of the effects of cyclic thermal stresses on a ductile metal. Trans. ASME. 76 (1954) 931-950.
DOI: 10.1115/1.4015021
Google Scholar
[12]
D. Rozumek, Z. Marciniak, Control system of the fatigue stand for material tests under combined bending with torsion loading and experimental results, Mechanical Systems and Signal Processing. 22(6) (2008) 1289-1296.
DOI: 10.1016/j.ymssp.2007.09.009
Google Scholar
[13]
D. Rozumek, Z. Marciniak, The investigation of crack growth in specimens with rectangular cross-sections under out-of-phase bending and torsional loading. Int. J. of Fatigue. 39 (2012) 81-87.
DOI: 10.1016/j.ijfatigue.2011.02.013
Google Scholar
[14]
E. Macha, J. Słowik, R. Pawliczek, Energy based characterization of fatigue behavior of cyclically unstable materials, Solid State Phenomena. 147-149 (2009) 512-517.
DOI: 10.4028/www.scientific.net/ssp.147-149.512
Google Scholar
[15]
K. Smith, P. Watson, T. Topper, A stress-strain function for the fatigue of metals. J. Materials. 5 (1970) 767-779.
Google Scholar