Accumulation of Fatigue Damages for Block-Type Loads with Use of Material Memory Function

Article Preview

Abstract:

The paper proposes a new model of fatigue damage accumulation based on the memory of the material and developed on the basis of memorizing of the meaningless material. The comparison of damage accumulation between the classical and proposed models for chosen materials are in favor of the authors model.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 224)

Pages:

39-44

Citation:

Online since:

November 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Anderson R.B., Tweney R.D.: Artifactual power curves in forgetting, Memory and Cognition, 1997, Vol. 25, pp.724-730.

DOI: 10.3758/bf03211315

Google Scholar

[2] Kurek M., Łagoda T., Katzy D.: Comparison of fatigue characteristics of some selected materials, Materials Testing (Materialprufung), Vol. 56, No. 2, 2014, pp.92-95.

DOI: 10.3139/120.110529

Google Scholar

[3] Niesłony A., Kurek A.: Influence of the Selected Fatigue Characteristics of the Material on Calculated Fatigue Life under Variable Amplitude Loading, Applied Mechanics and Materials Vol. 104 (2012).

DOI: 10.4028/www.scientific.net/amm.104.197

Google Scholar

[4] Sonsino C.M., Łagoda T., Demofonti G.: Damage accumulation under variable amplitude loading of welded medium- and high-strength steels, Int. J. Fatigue, 2004, Vol. 26, No. 5, pp.487-495.

DOI: 10.1016/j.ijfatigue.2003.10.001

Google Scholar

[5] Yang L., Fatemi A.: Cumulative fatigue damage assessment and life predictions of as-forged vs QT V-based MA steels using two-step loading experiments, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2003 vol. 217 no. 2 145-155.

DOI: 10.1177/146442070321700206

Google Scholar

[6] Miller K. J., Zachariah K. P.: Cumulative damage laws for fatigue crack initiation and stage I propagation, The Journal of Strain Analysis for Engineering Design, 1977, vol. 12 no. 4, pp.262-270.

DOI: 10.1243/03093247v124262

Google Scholar

[7] Ishiyama S., Eto M.: Effect of stress history on cumulative fatigue damage of fine-grained isotropic GCR graphite, Elsevier Science Ltd., Carbon Vol. 34, No. 8, 1996, pp.967-974.

DOI: 10.1016/0008-6223(96)00036-x

Google Scholar

[8] Böhm E., Kurek M., Junak G., Cieśla M., Łagoda T.: Accumulation of Fatigue Damage Using Memory of the Material, Procedia Materials Science, Vol. 3, p.2–7, (2014).

DOI: 10.1016/j.mspro.2014.06.002

Google Scholar

[9] Junak G., Cieśla M., Low-cycle fatigue of P91 and P92 steels used in the Power engineering industry, Archives of Materiale Science and Engineering, Vol. 48, 2011, pp.19-24.

Google Scholar

[10] Skibicki D., Sempruch J., Pejkowski Ł.: Model of non-proportional fatigue load in the form of block load spectrum, Mat. -wiss. u. Werkstofftech, 45, No. 2 pp.68-78, (2014).

DOI: 10.1002/mawe.201400206

Google Scholar