[1]
E.A. Loria, Gamma titanium aluminides as prospective structural materials, Intermetallics 8 (2000) 1339-1345.
DOI: 10.1016/s0966-9795(00)00073-x
Google Scholar
[2]
W. Szkliniarz, TiAl Intermetallic Alloys (in Polish), Silesian University of Technology House of Publishing, Gliwice (2007).
Google Scholar
[3]
W. Szkliniarz, A. Szkliniarz, The Chemical Composition and Microstructure of Ti-47Al-2W-0. 5Si Alloy Melted in Ceramic Crucibles, Solid State Phenomena 191 (2012) 211-220.
DOI: 10.4028/www.scientific.net/ssp.191.211
Google Scholar
[4]
W. Szkliniarz, A. Szkliniarz, Effect of boron addition on the microstructure of Ti-47Al-2W-0. 5Si alloy, Solid State Phenomena 212 (2014) 29-32.
DOI: 10.4028/www.scientific.net/ssp.212.29
Google Scholar
[5]
H.R. Ogden, R.I. Jaffee, The effects of carbon, oxygen, and nitrogen on the mechanical properties of titanium and titanium alloys, Titanium Metallurgical Laboratory Report 20, Ohio (1955) 1-101.
DOI: 10.2172/4370612
Google Scholar
[6]
U. Zwicker, Titan und Titanlegierungen, Springer-Verlag, Berlin-Heidelberg-New York (1974).
Google Scholar
[7]
Titanium and titanium alloys, Fundamentals and Applications, ed. by C. Leyens and M. Peters, WILEY-VCH GmbH & Co. KGaA (2003).
Google Scholar
[8]
O.P. Solonina, N.M. Ulyakova, Effect of carbon on the mechanical properties and structure of titanium alloys, Materials Science and Heat Treatment 4 (1974) 310-312.
DOI: 10.1007/bf00679223
Google Scholar
[9]
J. Grauman, S. Fox, S. Nyakana, Titanium alloy having improved corrosion resistance and strength, United States Patent US2006/035867, (2006).
Google Scholar
[10]
S.Z. Zhang, G.P. Li, Q.J. Wang, Y.Y. Liu, D. Li, R. Yang, Effect of carbon on upper (a+b) phase field of Ti-5. 6Al-4. 8Sn-2. 0Zr-1Mo-0. 34Si-0. 7Nd titanium alloy, Materials Science and Technology 20 (2004) 167-172.
DOI: 10.1179/026708304225011162
Google Scholar
[11]
Y.G. Li, M.H. Loretto, D. Rugg, W. Voice, Effect of heat treatment and exposure on microstructure and mechanical properties of Ti-25V-15Cr-2Al-0. 2C (wt. %), Acta mater. 49 (2001) 3011-3017.
DOI: 10.1016/s1359-6454(01)00206-3
Google Scholar
[12]
R. Sarkara, P. Ghosala, K. Muraleedharana, T.K. Nandya, K.K. Ray, Effect of boron and carbon addition on microstructure and mechanical properties of Ti-15-3 alloy, Mater. Sci. Eng. A 528 (2011) 4819-4829.
DOI: 10.1016/j.msea.2011.03.014
Google Scholar
[13]
N. Wain, X.J. Hao, G.A. Ravi, X. Wu, The influence of carbon on precipitation of a in Ti-5Al-5Mo-5V-3Cr, Mater. Sci. Eng. A 527 (2010) 7673-7683.
DOI: 10.1016/j.msea.2010.08.032
Google Scholar
[14]
A. Wardle, M. Loretto, R. Smallman, The influence of carbon additions on the microstructure and hardness of a Ti alloy, Titanium, Science and Technology, Deutsche Gesellschaft für metallkunde 3 (1985) 1559-1566.
Google Scholar
[15]
Z.Q. Chen, Y.G. Li, M.H. Loretto, X. Wu, Role of alloying elements in microstructures of beta titanium alloys with carbon additions, Mater. Sci. Tech. 10 (2003) 1391-1398.
DOI: 10.1179/026708303225005999
Google Scholar
[16]
G. Lutjering J.C. Williams, A. Gysler, Microstructure and mechanical properties of titanium alloys, Ed. J.C.M. Li, World Scientific, Singapore (1998) 1-77.
Google Scholar
[17]
Information on http: /cartech. ides. com/datasheet. aspx, 12. (2013).
Google Scholar
[18]
Information on Titanium and Titanium alloys, ASM Handbook online, ASM International (http: /products. asminternational. org/hbk/index. jsp, 12. 2013).
Google Scholar
[19]
Information on www. timet. com, 12. (2013).
Google Scholar
[20]
Information on Titanium alloy guide, Amazon Web services, Tiquideweb. pdf, 12. (2013).
Google Scholar