Thermal Stability of Ti-6Al-4V Alloy with Carbon Content

Article Preview

Abstract:

In the paper, the effect of long-term annealing (to 500 h) on the microstructure and hardness of two-phase titanium alloy which represent group of α+β (Ti-6Al-4V) with 0.7 wt. % carbon content was present. The stability of microstructure after long-term annealing was conducted to alloys in hardening state (after solution treatment and aging). Annealing was carried out at a temperature above the operating temperature of commercial titanium alloys without carbon content. The analysis of changes in the microstructure at research range of annealing time indicates its stability, which was confirmed by hardness test of investigated alloys. For comparison to Ti-6Al-4V-0.7C alloy, the microstructure stability research at 420oC was conducted for classical alloy contain no carbon. This alloy was previously subject solution and aging treatment under the same conditions as tested alloy.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 226)

Pages:

23-28

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.A. Loria, Gamma titanium aluminides as prospective structural materials, Intermetallics 8 (2000) 1339-1345.

DOI: 10.1016/s0966-9795(00)00073-x

Google Scholar

[2] W. Szkliniarz, TiAl Intermetallic Alloys (in Polish), Silesian University of Technology House of Publishing, Gliwice (2007).

Google Scholar

[3] W. Szkliniarz, A. Szkliniarz, The Chemical Composition and Microstructure of Ti-47Al-2W-0. 5Si Alloy Melted in Ceramic Crucibles, Solid State Phenomena 191 (2012) 211-220.

DOI: 10.4028/www.scientific.net/ssp.191.211

Google Scholar

[4] W. Szkliniarz, A. Szkliniarz, Effect of boron addition on the microstructure of Ti-47Al-2W-0. 5Si alloy, Solid State Phenomena 212 (2014) 29-32.

DOI: 10.4028/www.scientific.net/ssp.212.29

Google Scholar

[5] H.R. Ogden, R.I. Jaffee, The effects of carbon, oxygen, and nitrogen on the mechanical properties of titanium and titanium alloys, Titanium Metallurgical Laboratory Report 20, Ohio (1955) 1-101.

DOI: 10.2172/4370612

Google Scholar

[6] U. Zwicker, Titan und Titanlegierungen, Springer-Verlag, Berlin-Heidelberg-New York (1974).

Google Scholar

[7] Titanium and titanium alloys, Fundamentals and Applications, ed. by C. Leyens and M. Peters, WILEY-VCH GmbH & Co. KGaA (2003).

Google Scholar

[8] O.P. Solonina, N.M. Ulyakova, Effect of carbon on the mechanical properties and structure of titanium alloys, Materials Science and Heat Treatment 4 (1974) 310-312.

DOI: 10.1007/bf00679223

Google Scholar

[9] J. Grauman, S. Fox, S. Nyakana, Titanium alloy having improved corrosion resistance and strength, United States Patent US2006/035867, (2006).

Google Scholar

[10] S.Z. Zhang, G.P. Li, Q.J. Wang, Y.Y. Liu, D. Li, R. Yang, Effect of carbon on upper (a+b) phase field of Ti-5. 6Al-4. 8Sn-2. 0Zr-1Mo-0. 34Si-0. 7Nd titanium alloy, Materials Science and Technology 20 (2004) 167-172.

DOI: 10.1179/026708304225011162

Google Scholar

[11] Y.G. Li, M.H. Loretto, D. Rugg, W. Voice, Effect of heat treatment and exposure on microstructure and mechanical properties of Ti-25V-15Cr-2Al-0. 2C (wt. %), Acta mater. 49 (2001) 3011-3017.

DOI: 10.1016/s1359-6454(01)00206-3

Google Scholar

[12] R. Sarkara, P. Ghosala, K. Muraleedharana, T.K. Nandya, K.K. Ray, Effect of boron and carbon addition on microstructure and mechanical properties of Ti-15-3 alloy, Mater. Sci. Eng. A 528 (2011) 4819-4829.

DOI: 10.1016/j.msea.2011.03.014

Google Scholar

[13] N. Wain, X.J. Hao, G.A. Ravi, X. Wu, The influence of carbon on precipitation of a in Ti-5Al-5Mo-5V-3Cr, Mater. Sci. Eng. A 527 (2010) 7673-7683.

DOI: 10.1016/j.msea.2010.08.032

Google Scholar

[14] A. Wardle, M. Loretto, R. Smallman, The influence of carbon additions on the microstructure and hardness of a Ti alloy, Titanium, Science and Technology, Deutsche Gesellschaft für metallkunde 3 (1985) 1559-1566.

Google Scholar

[15] Z.Q. Chen, Y.G. Li, M.H. Loretto, X. Wu, Role of alloying elements in microstructures of beta titanium alloys with carbon additions, Mater. Sci. Tech. 10 (2003) 1391-1398.

DOI: 10.1179/026708303225005999

Google Scholar

[16] G. Lutjering J.C. Williams, A. Gysler, Microstructure and mechanical properties of titanium alloys, Ed. J.C.M. Li, World Scientific, Singapore (1998) 1-77.

Google Scholar

[17] Information on http: /cartech. ides. com/datasheet. aspx, 12. (2013).

Google Scholar

[18] Information on Titanium and Titanium alloys, ASM Handbook online, ASM International (http: /products. asminternational. org/hbk/index. jsp, 12. 2013).

Google Scholar

[19] Information on www. timet. com, 12. (2013).

Google Scholar

[20] Information on Titanium alloy guide, Amazon Web services, Tiquideweb. pdf, 12. (2013).

Google Scholar