Multi-Phased Electrode Materials for the Electroevolution of Oxygen

Article Preview

Abstract:

Recently, many efforts have been made to develop new anode materials able to catalyze the oxygen electroevolution reaction (OER). This review summarizes recent work undertaken on production and electroactivity of practical anode materials for an alkaline water electrolysis. Examples of mixed oxides with ABO3 perovskite-type structure, metal compounds crystallizing in the spinel structure, electrolytic coatings of nickel alloys, as well as amorphous nickel-and cobalt-based electrolytic composite coatings, have been presented. The effect of the phase composition of the anode material on its activity in the OER, has also been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 228)

Pages:

23-31

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Wang, H. Zhong, Y. Qin, X. Zhang: Angew. Chem. Int. Edit. Vol. 52 (20) (2013), p.5248.

Google Scholar

[2] A. Lasia: Modeling of Impedance of Porous Electrodes, in: Modern Aspects of Electrochemistry, Vol. 43, M. Schlesinger (Ed. ), Springer, (2009).

Google Scholar

[3] F. Ferrara: New Materials for Eco-sustainable Electrochemical Processes: Oxygen Evolution Reaction at Different Electrode Materials, PhD Thesis, Università degli Studi di Cagliari, XX Ciclo, Italy.

Google Scholar

[4] K. Kinoshita: Electrochemical Oxygen Technology, The Electrochemical Society Series, John Wiley & Sons, Canada, (1992).

Google Scholar

[5] B.K. Sharma: Electrochemistry, M. Sharma & P. Sharma (Eds. ), Krishna Prakashan Media, 1997-98.

Google Scholar

[6] D.E. Hall: J. Electrochem. Soc. Vol. 132 (2) (1985), p. 41C.

Google Scholar

[7] K. Darowicki, J. Orlikowski: J. Electrochem. Soc. Vol. 146 (2) (1999), p.663.

Google Scholar

[8] J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn: Science Vol. 334 (6061) (2011), p.1383.

DOI: 10.1126/science.1212858

Google Scholar

[9] Properties and Applications of Perovskite-type Oxides, L.G. Tejuca, J.L.G. Fierro (Eds. ), Marcel Dekker, New York, (1993).

Google Scholar

[10] J. O'M. Bockris, T. Otagawa: J. Electrochem. Soc. Vol. 131 (2) (1984), p.290.

Google Scholar

[11] J. O'M. Bockris, T. Otagawa: J. Phys. Chem. Vol. 87 (1983), p.2960.

Google Scholar

[12] Y. Miyahara, K. Miyazaki, T. Fukutsuka, T. Abe: J. Electrochem. Soc. Vol. 161 (6) (2014), p. F694.

Google Scholar

[13] S.K. Tiwari, P. Chartier, R.N. Singh: J. Electrochem. Soc. Vol. 142 (1995), p.148.

Google Scholar

[14] R.N. Singh, B. Lal: Int. J. Hydrogen Energ. Vol. 27 (2002), p.45.

Google Scholar

[15] B. Lal, M.K. Raghunandan, M. Gupta, R.N. Singh: Int. J. Hydrogen Energ. Vol. 30 (2005), p.723.

Google Scholar

[16] S.K. Tiwari, S.P. Sinngh, R.N. Singh: J. Electrochem. Soc. Vol. 143 (1996), p.1505.

Google Scholar

[17] A.N. Jain, S.K. Tiwari, P. Chartier, R.N. Singh: J. Chem. Soc. Faraday Trans. Vol. 91 (1995), p.1871.

Google Scholar

[18] Z. Serpil Gönen, T. Kumar Mandal, J. Gopalakrishnan, B.W. Eichhorn, R.L. Greene: Indian J. Chem. Vol. 42A (2003), p.2228.

Google Scholar

[19] M. Kumar, R. Awasthi, A.S.K. Sinha, R.N. Singh: Int. J. Hydrogen Energ. Vol. 36 (2011), p.8831.

Google Scholar

[20] C. Jin, X. Cao, L. Zhang, C. Zhang, R. Yang: J. Power Sources Vol. 241 (2013), p.225.

Google Scholar

[21] C. Jin, X. Cao, F. Lu, Z. Yang, R. Yang: Int. J. Hydrogen Energ. Vol. 38 (2013), p.10389.

Google Scholar

[22] M. Kumar, R. Awasthi, A.K. Pramanick, R.N. Singh: Int. J. Hydrogen Energ. Vol. 36 (2011), p.12698.

Google Scholar

[23] R.N. Singh, J.P. Singh, A. Singh: Int. J. Hydrogen Energ. Vol. 33 (2008), p.4260.

Google Scholar

[24] R.N. Singh, R. Madhu Awasthi, A.S.K. Sinha: J. Solid State Electrochem. Vol. 13 (2009), p.1613.

Google Scholar

[25] R.N. Singh, R. Madhu Awasthi, A.S.K. Sinha: Electrochim. Acta Vol. 54 (2009), p.3020.

Google Scholar

[26] R.N. Singh, R. Madhu Awasthi, S.K. Tiwari: Int. J. Hydrogen Energ. Vol. 34 (2009), p.4693.

Google Scholar

[27] R.N. Singh, M. Kumar, A.S.K. Sinha: Int. J. Hydrogen Energ. Vol. 37 (2012), p.15117.

Google Scholar

[28] M. Hamdani, R.N. Singh, P. Chartier: Int. J. Electrochemical Sci. Vol. 5 (2010), p.556.

Google Scholar

[29] A.C. Tavares, M.A.M. Cartaxo, M.I. da Silva Pereira, F.M. Costa: J. Electroanal. Chem. Vol. 464 (1999), p.187.

Google Scholar

[30] E. Rios, J-L. Gautier, G. Poillerat, P. Chartier: Electrochim. Acta Vol. 44 (1998), p.1491.

Google Scholar

[31] F. Svegl, B. Orel, I. Grabec-Svegl, V. Kaucic: Electrochim. Acta Vol. 45 (2000), p.4359.

Google Scholar

[32] K. Fatih, B. Marsan: Can. J. Chem. Vol. 75 (1997), p.1597.

Google Scholar

[33] N. Fradette, B. Marsan: J. Electrochem. Soc. Vol. 145 (1998), p.2320.

Google Scholar

[34] J.P. Singh, R.N. Singh: J. New Mater. Electrochem. Sys. Vol. 3 (2000), p.137.

Google Scholar

[35] R.N. Singh, J.P. Pandey, N.K. Singh, B. Lal, P. Chartier, J.F. Koenig: Electrochim. Acta Vol. 45 (2000), p. (1911).

Google Scholar

[36] B. Lal, N.K. Singh, S. Samuel, R.N. Singh: J. New Mater. Electrochem. Sys. Vol. 2 (1999), p.59.

Google Scholar

[37] S.K. Tiwari, S. Samuel, R.N. Singh, G. Poillerat, J.F. Koenig, P. Chartier: Int. J. Hydrogen Energ. Vol. 20 (1995), p.9.

Google Scholar

[38] S.P. Singh, S. Samuel, S.K. Tiwari, R.N. Singh: Int. J. Hydrogen Energ. Vol. 21 (1996), p.171.

Google Scholar

[39] G. Wu, N. Li, D-R. Zhou, K. Mitsuo, B-Q. Xu: J. Solid State Chem. Vol. 177 (2004), p.3682.

Google Scholar

[40] E.B. Castro, S.G. Real, L.F. PinheiroDick: Int. J. Hydrogen Energ. Vol. 29 (2004), p.255.

Google Scholar

[41] E.B. Castro, C.A. Gervasi: Int. J. Hydrogen Energ. Vol. 25 (2000), p.1163.

Google Scholar

[42] B. Lu, D. Cao, P. Wang, G. Wang, Y. Gao: Int. J. Hydrogen Energ. Vol. 36 (2011), p.72.

Google Scholar

[43] B. Chi, J. Li, X.Z. Yang, H. Lin, N. Wang: Electrochim. Acta Vol. 50 (2005), p. (2059).

Google Scholar

[44] B. Chi, H. Lin, J. Li, N. Wang, J. Yang: Int. J. Hydrogen Energ. Vol. 31 (2006), p.1210.

Google Scholar

[45] Y. Li, P. Hasin, Y. Wu: Adv. Mater. Vol. 22 (2010), p. (1926).

Google Scholar

[46] E. Rios, Y. -Y. Chen, M. Gracia, J.F. Marco, J.R. Gancedo, J.L. Gautier: Electrochim. Acta Vol. 47 (2001), p.559.

Google Scholar

[47] I. Nikolov, R. Darkaoui, E. Zhecheva, R. Stoyanova, N. Dimitrov, T. Vitanov: J. Electroanal. Chem. Vol. 429 (1997), p.157.

Google Scholar

[48] A.A. Singh, R.N. Singh: Int. J. Hydrogen Energ. Vol. 35 (2010), p.3243.

Google Scholar

[49] M.I. Godinho, M.A. Catarino, M.I. da Silva Pereira, M.H. Mendonca, F.M. Costa: Electrochim. Acta Vol. 47 (2002), p.4307.

Google Scholar

[50] M.H. Mendonca, M.I. Godinho, M.A. Catarino, M.I. da Silva Pereira, F.M. Costa: Solid State Sci. Vol. 4 (2002), p.175.

Google Scholar

[51] T-C. Wen, H-M. Kang: Electrochim. Acta Vol. 43 (1998), p.1729.

Google Scholar

[52] F. Chen, C. Jiang, J. Liu, D. Xe, X. Zhang, J. Wen, Y. Wang: Appl. Surf. Sci. Vol. 253 (2007), p.5155.

Google Scholar

[53] V.K.V.P. Srirapu, M. Kumar, R. Awasthi, R.N. Singh, A.S.K. Sinha: Int. J. Hydrogen Energ. Vol. 38 (2013), p.13587.

Google Scholar

[54] B. Chi, J. Li, X. Yang, Y. Gong, N. Wang: Int. J. Hydrogen Energ. Vol. 30 (2005), p.29.

Google Scholar

[55] J. Kupka, A. Budniok: J. Appl. Electrochem. Vol. 20 (1990), p.1015.

Google Scholar

[56] A. Budniok, J. Kupka: Electrochim. Acta Vol. 34 (1998), p.871.

Google Scholar

[57] M. Popczyk, A. Budniok, Proc. of the 5th International Symposium-Chemistry Forum 1998, Faculty of Chemistry, Warsaw University of Technology, Warszawa 27-29 April (1998), Poland.

Google Scholar

[58] M. Popczyk, A. Budniok, Proc. of the 6th International Symposium-Chemistry Forum 1999, Faculty of Chemistry, Warsaw University of Technology, Warszawa 19-21 April (1999), Poland.

Google Scholar

[59] M.J. De Giz, G. Tremiliosi-Filho, E.R. Gonzalez, Srinivasan, A.J. Appleby: Int. J. Hydrogen Energ. Vol. 20 (1995), p.423.

DOI: 10.1016/0360-3199(94)00068-b

Google Scholar

[60] M. Oleksy, A. Budniok, J. Niedbała, P. Matyja: Electrochim. Acta Vol. 37 (1992), p.1015.

Google Scholar

[61] L. Trotochaud, L.S. Young, J.K. Ranney, S.W. Boettcher: J. Am. Chem. Soc. Vol. 136 (2014), p.6744.

Google Scholar

[62] J. Niedbała, A. Budniok, D. Gierlotka, J. Surówka, P. Matyja: Thin Solid Films Vol. 266 (2) (1995), p.113.

DOI: 10.1016/0040-6090(95)06567-9

Google Scholar

[63] J. Niedbała, A. Budniok, J. Surówka, D. Gierlotka: Thin Solid Films Vol. 287 (1-2) (1996), p.164.

DOI: 10.1016/s0040-6090(96)08779-2

Google Scholar

[64] J. Niedbała: Composite Coatings on the Base of Amorphous Nickel with Transient Metal Oxides for the Needs of Electrooxidation, PhD Thesis, 1997, University of Lodz, Poland.

Google Scholar

[65] D.F. Susan, K. Barmak, A.R. Marder: Thin Solid Films Vol. 307 (1997), p.133.

Google Scholar

[66] B. Mahdavi, P. Los, M.J. Lessard: J. Can. Chem. Vol. 72 (1994), p.2268.

Google Scholar

[67] M. Oleksy, A. Budniok, J. Niedbała, P. Matyja: Electrochim. Acta Vol. 39 (16) (1994), p.2439.

DOI: 10.1016/0013-4686(94)00201-0

Google Scholar

[68] J. Surówka, A. Budniok, B. Bzowski, J. Warczewski: Thin Solid Films Vol. 307 (1-2) (1997), p.233.

DOI: 10.1016/s0040-6090(97)00307-6

Google Scholar