New Ni-Me-P Electrode Materials

Article Preview

Abstract:

The Ni-Me-P alloy coatings containing metal as alloying component (Me = Co, W) in a Ni-P amorphous matrix, were potentiostatically electrodeposited onto a polycrystalline Cu substrate. Deposition potential was established based on polarization curves of electrodeposition of Ni-Co-P, Ni-W-P and Ni-P alloy coatings. SEM, EDS, XRD and X-ray microanalysis methods, were applied for chemical and physical characterization of the obtained coatings. Linear analysis of Ni, Co and W distribution in the microregions of the appropriate alloy coating revealed that surface distribution of these elements is homogeneous what is due to a molecular mixing of the amorphous nickel matrix with the alloying components. It was found that the Ni-Co-P and Ni-W-P coatings have the amorphous structure like the Ni-P deposit and alloying components as Co or W are built-in into the appropriate coating in the amorphous form. The mechanism of the induced codeposition of these ternary Ni-Me-P coatings, has been discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 228)

Pages:

39-48

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Lasia, in: Handbook of Fuel Cells – Fundamentals, Technology and Applications, W. Vielstich, H.A. Gasteiger, A. Lamm (Eds. ), Vol. 2: Electrocatalysis, John Wiley & Sons, Ltd., Chichester, 2003, pp.416-440.

Google Scholar

[2] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: Int. J. Hydrogen Energ. Vol. 29 (2004), p.145.

Google Scholar

[3] B. Łosiewicz, A. Budniok, A. Lasia, E. Łągiewka: Pol. J. Chem. Vol. 78 (2004), p.1457.

Google Scholar

[4] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: J. Appl. Electrochem. Vol. 34 (2004), p.507.

Google Scholar

[5] B. Łosiewicz: Mater. Chem. Phys. Vol. 128 (2011), p.442.

Google Scholar

[6] B. Łosiewicz: Przem. Chem. Vol. 91 (7) (2012), p.1362.

Google Scholar

[7] M. Popczyk, A. Budniok, H. Scholl, T. Błaszczyk: Mater. Sci. Forum Vol. 514-516 (2006), p.460.

Google Scholar

[8] M. Popczyk, A. Serek, A. Budniok: Nanotechnol. Vol. 14 (2003), p.341.

Google Scholar

[9] M. Popczyk, A. Budniok, A. Lasia: Int. J. Hydrogen Energ. Vol. 30 (2005), p.265.

Google Scholar

[10] N. Eliaz, E. Gileadi: Induced Codeposition of Alloys of Tungsten, Molybdenum and Rhenium with Transition Metals, Chapter 4, in: Modern Aspects of Electrochemistry, Vol. 42, C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco (Eds. ), Springer Science+Business Media, (2008).

DOI: 10.1007/978-0-387-49489-0_4

Google Scholar

[11] A. Brenner: Electrodeposition of Alloys, Vol. I & II, Academic Press, New York, (1963).

Google Scholar

[12] A. Brenner, D.E. Couch, E.K. Williams: J. Res. Natl. Bur. Stand. Vol. 44 (1950), p.109.

Google Scholar

[13] O. Younes, L. Zhu, Y. Rosenberg, Y. Shacham-Diamand, E. Gileadi: Langmuir Vol. 17 (2001), p.8270.

DOI: 10.1021/la010660x

Google Scholar

[14] O. Younes, E. Gileadi: J. Electrochem. Soc. Vol. 149 (2002), p. C100.

Google Scholar

[15] N. Eliaz, E. Gileadi: Induced Codeposition of Alloys of Tungsten, Molybdenum and Rhenium with Transition Metals, in: Modern Aspects of Electrochemistryy, Vol. 41, C.G. Vayenas, R.E. White (Eds. ), Springer, (2006).

DOI: 10.1007/978-0-387-49489-0_4

Google Scholar

[16] K.S. Lew, M. Raja, S. Thanikaikarasan, T. Kim, Y.D. Kim, T. Mahalingam: Mater. Chem. Phys. Vol. 112 (2008), p.249.

Google Scholar

[17] T.A. Aljohani, A.M. Almayouf, A.I. Almarshad: J. Mater. Sci. Eng. Vol. 3 (8) (2009), p.54.

Google Scholar