Electrode Materials

Article Preview

Abstract:

This review work was focused on conventional and modern electrodes which play an important role in electrochemical systems. Among many types of existing electrode materials, some of the most prominent materials from the conventional (metals and their alloys, graphite and mixed metal oxides) and the modern (amorphous, modified and composite) electrodes, have been outlined. What is also discussed is the recent intensive usability of nanocrystalline electrodes of better properties than their microcrystalline equivalents, and development trend of electrode materials.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 228)

Pages:

3-15

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Łosiewicz: Current Challenges of Hydrogen Energy, in: Fuelling the Future: Advances in Science and Technologies for Energy Generation, Transmission and Storage, A. Mendez-Vilos (Ed. ), BrownWalker Press, 2012, pp.312-316.

Google Scholar

[2] The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs, The National Academy of Sciences, 2004, Washington.

Google Scholar

[3] A. Lasia: Hydrogen Evolution Reaction, in: Handbook of Fuel Cells – Fundamentals, Technology and Applications, W. Vielstich, H.A. Gasteiger, A. Lamm (Eds. ), Vol. 2: Electrocatalysis, John Wiley & Sons, Ltd., Chichester, 2003, pp.416-440.

Google Scholar

[4] A. Budniok: Materiały elektrodowe stosowane w organicznej syntezie elektrochemicznej, Prace Naukowe Uniwersytetu Śląskiego, No. 1352, Katowice, (1993).

Google Scholar

[5] J. Koryta, J. Dvořák, L. Kavan: Principles of Electrochemistry, Second Edition, John Wiley & Sons, Chichester, (1993).

Google Scholar

[6] B. Łosiewicz: Dispersion Ni-P+Titanium Oxides Electrode Materials for Hydrogen Evolution, PhD Thesis, University of Silesia, 2002, Poland.

Google Scholar

[7] L.I. Krishtalik: J. Electroanal. Chem. Vol. 100 (1979), p.547.

Google Scholar

[8] S.A. Gamboa, P.J. Sebastian: Int. J. Hydrogen Energ. Vol. 26 (2) (2001), p.117.

Google Scholar

[9] C. Iwakura, M. Miyamoto, H. Inoue, M. Matsuoka, Y. Fukumoto: J. Electroanal. Chem. Vol. 411 (1-2) (1996), p.109.

Google Scholar

[10] N. Kanani: Electroplating: Basic Principles, Processes and Practice, Elsevier, Oxford, (2004).

Google Scholar

[11] I. Napłoszek: Electrochemical Properties of Composite Coatings Based on a Nickel Matrix Containing Al and Ti Intermetallic Phases, PhD Thesis, University of Silesia, 2006, Poland.

Google Scholar

[12] G.M. Jenkins, K. Kawamura: Nature Vol. 231 (1971), p.175.

Google Scholar

[13] Information on http: /www. substech. com.

Google Scholar

[14] P.J.F. Harris: Phil. Mag. Vol. 84 (29) (2004), p.3159.

Google Scholar

[15] Bulk Metallic Glasses, M.K. Miller, P. Liaw (Eds. ), Springer Science+Business Media, LLC., 2008, New York.

Google Scholar

[16] K. Brunelli, M. Dabal, R. Frattini, G. Sandon, I. Calliari: J. Alloys Compd. Vol. 317-318 (2001), p.595.

Google Scholar

[17] M. Metikos-Hukovic, A. Jukic: Electrochim. Acta Vol. 45 (25-26) (2000), p.4159.

Google Scholar

[18] A. Inoue, K. Hashimoto: Amorphous and Nano-crystalline Materials – Preparation, Properties, and Applications, Springer, (2001).

Google Scholar

[19] N. Eliaz, E. Gileadi: Induced Codeposition of Alloys of Tungsten, Molybdenum and Rhenium with Transition Metals, Chapter 4, in: Modern Aspects of Electrochemistry, Vol. 42, C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco (Eds. ), Springer Science+Business Media, (2008).

DOI: 10.1007/978-0-387-49489-0_4

Google Scholar

[20] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: Int. J. Hydrogen Energ. Vol. 29 (2004), p.145.

Google Scholar

[21] B. Łosiewicz, A. Budniok, A. Lasia, E. Łągiewka: Pol. J. Chem. Vol. 78 (2004), p.1457.

Google Scholar

[22] B. Łosiewicz, A. Budniok, E. Rówiński, E. Łągiewka, A. Lasia: J. Appl. Electrochem. Vol. 34 (2004), p.507.

Google Scholar

[23] B. Łosiewicz: Mater. Chem. Phys. Vol. 128 (2011), p.442.

Google Scholar

[24] B. Łosiewicz: Przem. Chem. Vol. 91 (7) (2012), p.1362.

Google Scholar

[25] L. Domingues, C. Oliveira, J.C.S. Fernandes, M.G.S. Ferreira, Proc. of the 5th International Symposium on Electrochemical Impedance Spectroscopy, Marilleva (Tn) Italy, ASSIM, 17-22 June 2001, p.217.

Google Scholar

[26] C.N.R. Rao, B. Gopalakrishnan: New Directions in Solid State Chemistry, Second Edition, Cambridge University Press, 1997, Cambridge.

Google Scholar

[27] K.H.J. Buschow, R.W. Calm, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan: The Encyklopedia of Materials: Science and Technology, Pergamon, An Imprint of Elsevier Science, (2001).

Google Scholar

[28] T.W. Clyne: Metal Matrix Composites, Pergamon, An Imprint of Elsevier Science, (2000).

Google Scholar

[29] R. Wanen: Carbon/Carbon, Cement, and Ceramic Matrix Composites, Pergamon, An Imprint of Elsevier Science, (2000).

Google Scholar

[30] C.L. Aravinda, V.S. Muralidharan, S.M. Mayanna: J. Appl. Electrochem. Vol. 30 (5) (2000), p.601.

Google Scholar

[31] N. Isaev, J.G. Osteryoung, J. Appl. Electrochem. Vol. 25 (1995), p.1091.

Google Scholar

[32] C.N.R. Rao, B. Raveau: Transition Metal Oxides (Structure, Properties, and Synthesis of Ceramic Oxides), Second Edition, Wiley-VCH, New York, (1998).

DOI: 10.1002/(sici)1099-0739(199906)13:6<476::aid-aoc851>3.0.co;2-n

Google Scholar

[33] L. Benea, P.L. Bonora, A. Borello, Proc. of the 5th International Symposium on Electrochemical Impedance Spectroscopy, Marilleva (Tn) Italy, ASSIM, 17-22 June 2001, p.195.

Google Scholar

[34] W. Hu, J.Y. Lee: Int. J. Hydrogen Energ. Vol. 23 (4) (1998), p.253.

Google Scholar

[35] M.M. Jaksic, N.V. Krstajic, B.N. Grgur, M.V. Vojnovic, M. Zdujic: J. Alloy. Compd. Vol. 257 (1997), p.245.

Google Scholar

[36] Y. Yi, J.K. Lee, H.J. Lee, S. Uhm, S.C. Nam, J. Lee: Electrochem. Commun. Vol. 11 (2009), p.2121.

Google Scholar

[37] F. Jonas, J.T. Morrison: Synth. Met. Vol. 85 (1997), p.1397.

Google Scholar

[38] M.A. del Valle, F.R. Diaz, M.E. Bodini, T. Pizarro, R. Cordowa, H. Gomez, R. Schrebler: J. Appl. Chem. Vol. 28 (1998), p.943.

Google Scholar

[39] J.G. Williams, A. Pavan: Fracture of Polymers, Composites and Adhesives, Pergamon, An Imprint of Elsevier Science, (2000).

Google Scholar