[1]
R. Adhikari, B. Joshi, R. Narro-Garcia, E. De la Rosa, S. W. Lee, Microwave hydrothermal synthesis and infrared to visible upconversional luminescence of Er3+/Yb3+ co-doped bismuth molybdate nanopowder, J. Lumin. 145 (2014) 866-871.
DOI: 10.1016/j.jlumin.2013.09.012
Google Scholar
[2]
R. -R. Cui, C. -Y. Deng, X. -X. Gong, X. -Ch. Li, J. -P. Zhou, Luminesence properties of Eu3+ doped CaBi2Ta2O9 bismuth layered-structure ferroelectrics, Mat. Res. Bul., 48 (2013) 4301-4306.
DOI: 10.1016/j.materresbull.2013.06.053
Google Scholar
[3]
V. Volkov, M. Rico, A. Mendez-Blas, C. Zaldo, Preparation of disordered NaBi(XO4)2, X = W or Mo, crystals doped with rare earth, J. Solid State Chem, 63 (2002) 95-105.
DOI: 10.1016/s0022-3697(01)00084-1
Google Scholar
[4]
M. A. Illarramendi, I. Aramburu, J. Fernandez, R. Balda, M. Al-Saleh, Transport mean free path in K5Bi1−xNdx(MoO4)4 laser crystal powders, J. Phys.: Condens. Mater. 19 (2007) 036206.
DOI: 10.1364/meta.2006.thd9
Google Scholar
[5]
J. Fernandez, I. Iparraguirre , I. Aramburu , A. Illarramendi , J. Azkargorta , M. Voda , R. Balda, K5Nd(MoO4)4: a self-tunable laser crystal, Opt. Lett. 28 (2003) 1341-1343.
DOI: 10.1364/ol.28.001341
Google Scholar
[6]
M. Voda, R. Balda, A. J. Garcia, J. Fernandez, Site-selective time-resolved laser spectroscopy of Eu3+ in K5Bi1−xEux(MoO4)4 crystals, J. Lumin. 72-74 (1997) 276-277.
DOI: 10.1016/s0022-2313(96)00433-4
Google Scholar
[7]
A. Waskovska, L. Gerward, J. Staun Olsen, M. Maszka, T. Lis, A. Pietraszko, W. Morgenroth, Low-temperature and high-pressure structural behaviour of NaBi(MoO4)2 – an X-Ray diffraction study, J. Solid State Chem. 178 (2005) 2218-2224.
DOI: 10.1016/j.jssc.2005.05.001
Google Scholar
[8]
Zb. Mazurak, G. Blasse, G. Liebertz, The luminescence of the scheelite NaBi(MoO4)2, J. Solid State Chem. 68 (1987) 181-184.
DOI: 10.1016/0022-4596(87)90301-x
Google Scholar
[9]
M. Rico, V. Volkov, C. Cascales, C. Zaldo, Measurement and crystal-field analysis of Er3+ energy levels in crystals of NaBi(MoO4)2 and NaBi(WO4)2 with local disorder, Chem. Phys. 279 (2002) 73-86.
DOI: 10.1016/s0301-0104(02)00486-x
Google Scholar
[10]
B. N. Tsydypova, N. V. Gusakova, A. A. Pavlyuk, A. S. Yasyukevich, N. V. Kuleshov, S. V. Grigor'ev, S. F. Solodovnikov, Growth and spectroscopic characteristics of Yb3+ doped NaBi(MoO4)2 crystals, Inorg. Mater. 50 (2014) 617–621.
DOI: 10.1134/s0020168514060193
Google Scholar
[11]
A.A. Kaminskii, A. Kholov, P.V. Klevtsov, S. Kh. Khafizov, Spectroscopy and stimulated emission of Nd3+- doped tetragonal NaBi(MoO4)2 and NaBi(WO4)2 disordered crystals, Phys. Status Solidi (a) 114 (2006) 713-719.
DOI: 10.1002/pssa.2211140235
Google Scholar
[12]
P.V. Klevtsov, V.A. Vinokurov, R.F. Klevtsova, Alkali metal bismuth double molybdates and tungstates, M+Bi(MoO4)2, Kristallografiya 18 (1973) 1192–1197.
Google Scholar
[13]
J. Hanuza, M. Maczka, J. H van der Maas, Vibrational dynamics of the WOW and WOOW bridge bonds: polarized infrared and Raman spectra of monoclinic KBi(WO4)2 single crystal, J. Phys.: Condens. Matter, 6 (1994) 10263.
DOI: 10.1088/0953-8984/6/47/009
Google Scholar
[14]
J. Hanuza, M. Maczka, Vibrational properties of the double molybdates MX(MoO4)2 family (M = Li, Na, K, Cs; X = Bi, Cr) Vibrational Spectroscopy, 7 (1994) 85-96.
DOI: 10.1016/0924-2031(94)85044-5
Google Scholar
[15]
J. Hanuza, M. Maczka, J. H van der Maas, Vibrational characteristics of the single-bridge MoOMo and double – bridge MoO2Mo intermolecular interections – polirized infrared and Raman spectra of monoclinic KBi(MoO4)2 single crystal, Vibrational Spectroscopy, 8 (1995).
DOI: 10.1016/0924-2031(94)00076-s
Google Scholar
[16]
Yu. Hizhnyi, S. Nedilko, V. Chornii, T. Nikolaenko, I. Zatovsky, K. Terebilenko, R. Boiko, Electronic structure and luminescence spectroscopy of MIBi(MoO4)2 (MI = Li, Na, K), LiY(MoO4)2 and NaFe(MoO4)2 molybdates, Solid State Phenomena 200 (2013).
DOI: 10.4028/www.scientific.net/ssp.200.114
Google Scholar