[1]
V.V. Nosenko, I.P. Vorona, S.S. Ishchenko, N.P. Baran, I.V. Zatovsky, N.A. Gorodilova, V. Yu. Povarchuk, Effect of pre-annealing on NO32- centers in synthetic hydroxyapatite, Radiation Measurements. 47 (2012) 970-973.
DOI: 10.1016/j.radmeas.2012.08.008
Google Scholar
[2]
S. V. Dorozhkin, Calcium orthophosphates, J. Mater. Sci. 42 (2007) 1061-1095.
Google Scholar
[3]
RZ. LeGeros Calcium phosphates in oral biology and medicine. Monographs in Oral Sciences. H.M. Myers, Basel; 15 (1991) 37-58.
Google Scholar
[4]
N.P. Baran, I.P. Vorona, S.S. Ishchenko, V.V. Nosenko, I.V. Zatovskii, N.A. Gorodilova, V. Yu. Povarchuk, NO32- and CO2- centers in synthetic hydroxyapatite: Features of the formation under g- and UV-irradiations, Phys. Solid State. 53 (2011).
DOI: 10.1134/s106378341109006x
Google Scholar
[5]
I.P. Vorona, S.S. Ishchenko, N.P. Baran, V.V. Nosenko, I.V. Zatovskii, A.I. Malyshenko, V. Yu. Povarchuk, Radiation-induced defects in annealed carbonate-containing hydroxyapatite, Phys. Solid State. 55 (2013), 2543-2548.
DOI: 10.1134/s1063783413120329
Google Scholar
[6]
F. Callens, Comparative EPR and ENDOR results on carbonate derived radicals in different host materials, Nucleonika. 42 (1997) 565-578.
Google Scholar
[7]
V.S. Sobolev, Physics of apatite, Novosibirsk: Nauka, (1975).
Google Scholar
[8]
K. Matsunaga, H. Murata, Formation Energies of Substitutional Sodium and Potassium in Hydroxyapatite, Materials Transactions, 50 (2009) 1041-1045.
DOI: 10.2320/matertrans.mc200819
Google Scholar
[9]
F.C.M. Driessens, R.M.H. Verbeeck, H.J.M. Heijligers, Some physical properties of Na- and CO3-containing apatites synthesized at high temperatures, Inorg. Chimica Acta. 80 (1983) 19-23.
DOI: 10.1016/s0020-1693(00)91256-8
Google Scholar
[10]
J. A. M. Zahedi, F. Ziaie, M. M. Larijani, S. M. Borghei, A. Kamaliyanfar, Synthesis and characterization of sodium-carbon apatite nano-crystals by chemical sedimentation method, Indian J. Sci. Technol. 5 (2012) 2464-2467.
Google Scholar
[11]
A.M. Pietak, J.W. Reid, M. Sayer Electron spin resonance in silicon substituted apatite and tricalcium phosphate, Biomaterials. 26, (2005) 3819-3830.
DOI: 10.1016/j.biomaterials.2004.10.013
Google Scholar
[12]
H. Nishikawa, Thermal behavior of hydroxyapatite in structural and spectrophotometric characteristics, Materails Letters. 50 (2001) 364-370.
DOI: 10.1016/s0167-577x(01)00318-4
Google Scholar
[13]
A. Porter, N. Patel, R. Brooks, S. Best, N. Rushton, W. Bonfield, Effect of carbonate substitution on the ultrastructural characteristics of hydroxyapatite implants, J. Mater. Sci: Mater in Medicine. 16 (2005) 899-907.
DOI: 10.1007/s10856-005-4424-1
Google Scholar
[14]
J. -P. Lafon, E. Champion, D. Bernache-Assolliant, R. Gibert, A. -M. Danna, Termal decomposition of carbonated calcium phosphate apatites, J. Thermal Anal. Colametry. 72 (2003) 1127-1134.
DOI: 10.1023/a:1025036214044
Google Scholar