Synthesis of Iron Oxide Nanoparticles by Different Methods and Study of their Properties

Article Preview

Abstract:

In this work, iron oxide nanoparticles have been synthesized by precipitation in diethylene glycol, by cryochemical synthesis, in microemulsions using surfactants Triton X-100, Brij-35 and CTAB. Comparative spectroscopic, thermal, X-ray diffraction, 57Fe zero-field Mössbauer and magnetic studies of the synthesized nanoparticles have been carried out. Magnetic fluids prepared from synthesized nanopowders have been characterized by calorimetric measurements of specific loss power (SLP).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 230)

Pages:

108-113

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Ghosh, L. Pradhan, Y.P. Devi, S.S. Meena, R. Tewari, A. Kumar, S. Sharma, N.S. Gajbhiye, R.K. Vatsa, B.N. Pandey, R.S. Ningthoujam, J. Mater. Chem. 21 (2011) 13388.

DOI: 10.1039/c1jm10092k

Google Scholar

[2] N. Singh, G.J. Jenkins, R. Asadi, S.H. Doak, Nano Rev. 1 (2010) 5358.

Google Scholar

[3] H. Yin, H.P. Too, G.M. Chow, Biomaterials 26 (2005) 5818.

Google Scholar

[4] K.C. Barick, S. Singh, N.V. Jadhav, D. Bahadur, B.N. Pandey, P.A. Hassan, Adv. Funct. Mater. 22 (2012) 4975.

Google Scholar

[5] D. L. Leslie-Pelecky, V. Labhasetwar, and R. H. Kraus, Nanobiomagnetics, in Advanced Magnetic Nanostructures, D. Sellmeyer and R. Shomski, Eds., Ch 15, pp.461-489, Springer Science & Business Media, New York, NY, USA, (2006).

DOI: 10.1007/0-387-23316-4_15

Google Scholar

[6] R. Hergt, R. Hiergeist, M. Zeisberger, D. Schülerb, U. Heyen, I. Hilger, W.A. Kaiser, Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools, J. Magn. Magn. Mater. 293 (2005) 80-86.

DOI: 10.1016/j.jmmm.2005.01.047

Google Scholar

[7] O.V. Yelenich, S.O. Solopan, A.G. Belous, Polyol Synthesis and Properties of AFe2O4 Nanoparticles (A = Mn, Fe, Co, Ni, Zn) with Spinel Structure, Solid State Phenomena 200 (2013) 149-155.

DOI: 10.4028/www.scientific.net/ssp.200.149

Google Scholar

[8] P.P. Gorbyk, A.L. Petranovska, M.P. Turelyk, N.V. Abramov, V.F. Chekhun, N. Yu. Lukyanov, Construction of Magnetocarried Nanocomposites for Medico-Biological Applications, Chem. Phys. Technol. Surf. 1(3), 360-370 (2010).

DOI: 10.1007/978-90-481-2309-4_6

Google Scholar

[9] Tetsuya Kida, Guoqing Guan, Yuuki Minami, Tingli Ma, Akira Yoshida, Photocatalytic hydrogen production from water over a LaMnO3/CdS nanocomposite prepared by the reverse micelle method, J. Mater. Chem. 13 (2003) 1186-1191.

DOI: 10.1039/b211812b

Google Scholar

[10] J. -H. Lee, J-T. Jang, J. -S. Choi, S.H. Moon, S. -H. Noh, J. -W. Kim, J. -G. Kim, I. -S. Kim, K.I. Park and J. Cheon, Nature Nanotechnology 6 (2011) 418-422.

DOI: 10.1038/nnano.2011.95

Google Scholar

[11] Y. T. He, and S. J. Traina, Transformation of magnetite to goethite under alkaline pH conditions, Clay Minerals 42 (2007) 13-19.

DOI: 10.1180/claymin.2007.042.1.02

Google Scholar

[12] R.M. Patil, P.B. Shete, N.D. Thorat et al., Superparamagnetic iron oxide/chitosan core/shells for hyperthermia application: Improved colloidal stability and biocompatibility, Journal of Magnetism and Magnetic Materials 355 (2014) 22-30.

DOI: 10.1016/j.jmmm.2013.11.033

Google Scholar

[13] S.P. Gubin, Magnetic Nanoparticles, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, (2009).

Google Scholar

[14] C.R. Vestal, Qing Song, Z. John Zhang, Effects of Interparticle Interactions upon the Magnetic Properties of CoFe2O4 and MnFe2O4 Nanocrystals, J. Phys. Chem. B 108 (2004) 18222-18227.

DOI: 10.1021/jp0464526

Google Scholar

[15] G. F. Goya, T. S. Berquo, F. C. Fonseca, M. P. Morales, J. Appl. Phys. 94 (2003) 3520.

Google Scholar