First-Principles Study of Electronic Structure of Cubic Perovskite-Like Fluorides

Article Preview

Abstract:

The electronic density of states of cubic perovskite-like fluorides has been evaluated by means of the projector augmented waves (PAW) within the local density approximation (LDA). For the first time the improved electronic energy bands have been calculated using the GW approximation. Ground-state and quasiparticle calculations have been done with the ABINIT code. Combined analysis of the densities of electronic states and obtained electron energy spectra makes it possible to draw conclusions regarding the possibility of the phenomenon of core-valence luminescence in the considered crystals.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 230)

Pages:

79-84

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hayatullah, G. Murtaza, R. Khenata, S. Naeem, M. N. Khalid, S. Mohammad, First Principle Calculations of the Ground and Excited State Properties of RbPbF3, Chin. Phys. Lett., 30, No. 9 (2013) 097101(4).

DOI: 10.1088/0256-307x/30/9/097101

Google Scholar

[2] G. V. M. Williams, C. Dotzler, A. Edgar, S. Raymond, Optically rewritable Bragg gratings in Mn2+ doped RbCdF3, Journal of Materials Science: Materials in Electronics, 20 (2009) 268-271.

DOI: 10.1007/s10854-008-9572-x

Google Scholar

[3] C. Dotzler, G. V. M. Williams, U. Rieser, J. Robinson, Photoluminescence, optically stimulated luminescence, and thermoluminescence study of RbMgF3: Eu2+, Journal of Appl. Phys., 105 (2009) 023107(7).

DOI: 10.1063/1.3068355

Google Scholar

[4] T. Nishimatsu, N. Terakubo, H. Mizuseki, Y. Kawazoe, Dorota A. Pawlak, K. Shimamura, T. Fukuda, Band Structures of Perovskite-Like Fluorides for Vacuum-Ultraviolet-Transparent Lens Materials, Jpn. J. Appl. Phys., 41 (2002) L365–L367.

DOI: 10.1143/jjap.41.l365

Google Scholar

[5] M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze, Implementation of the Projector Augmented-Wave Method in the ABINIT code. Application to the study of iron under pressure, Comput. Mat. Science 42 (2008) 337–351.

DOI: 10.1016/j.commatsci.2007.07.020

Google Scholar

[6] X. Gonze, B. Amadon, P. -M. Anglade, J. -M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G. -M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger, ABINIT: First-principles approach of materials and nanosystem properties. Computer Physics Communications, 180 (2009).

DOI: 10.1016/j.cpc.2009.07.007

Google Scholar

[7] S. Lebegue, S. Arnaud, M. Alouani, P. Bloechl, Implementation of an all-electron GW approximation based on the projector augmented wave method without plasmon pole approximation: Application to Si, SiC, AlAs, InAs, NaH, and KH, Phys. Rev. B 67 (2003).

DOI: 10.1103/physrevb.67.155208

Google Scholar

[8] F. Bruneval, N. Vast, and L. Reining, Effect of self-consistency on quasiparticles in solids, Phys. Rev. B 74 (2006) 045102 (15).

DOI: 10.1103/physrevb.74.045102

Google Scholar

[9] N.A.W. Holzwarth, A.R. Tackett, G.E. Matthews, A projector augmented wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions, Computer Physics Communications, 135 (2001) 329-347.

DOI: 10.1016/s0010-4655(00)00244-7

Google Scholar

[10] Y. Chornodolskyy, S. Syrotyuk, G. Stryganyuk, A. Voloshinovskii, P. Rodnyi, Electronic energy structure and core-valence luminescence of ABX3 (A = K, Rb, Cs; B = Ca; X = F) crystals, Journal of physical studies, 11 (2007) 421–426.

DOI: 10.30970/jps.11.421

Google Scholar