[1]
Hayatullah, G. Murtaza, R. Khenata, S. Naeem, M. N. Khalid, S. Mohammad, First Principle Calculations of the Ground and Excited State Properties of RbPbF3, Chin. Phys. Lett., 30, No. 9 (2013) 097101(4).
DOI: 10.1088/0256-307x/30/9/097101
Google Scholar
[2]
G. V. M. Williams, C. Dotzler, A. Edgar, S. Raymond, Optically rewritable Bragg gratings in Mn2+ doped RbCdF3, Journal of Materials Science: Materials in Electronics, 20 (2009) 268-271.
DOI: 10.1007/s10854-008-9572-x
Google Scholar
[3]
C. Dotzler, G. V. M. Williams, U. Rieser, J. Robinson, Photoluminescence, optically stimulated luminescence, and thermoluminescence study of RbMgF3: Eu2+, Journal of Appl. Phys., 105 (2009) 023107(7).
DOI: 10.1063/1.3068355
Google Scholar
[4]
T. Nishimatsu, N. Terakubo, H. Mizuseki, Y. Kawazoe, Dorota A. Pawlak, K. Shimamura, T. Fukuda, Band Structures of Perovskite-Like Fluorides for Vacuum-Ultraviolet-Transparent Lens Materials, Jpn. J. Appl. Phys., 41 (2002) L365–L367.
DOI: 10.1143/jjap.41.l365
Google Scholar
[5]
M. Torrent, F. Jollet, F. Bottin, G. Zerah, and X. Gonze, Implementation of the Projector Augmented-Wave Method in the ABINIT code. Application to the study of iron under pressure, Comput. Mat. Science 42 (2008) 337–351.
DOI: 10.1016/j.commatsci.2007.07.020
Google Scholar
[6]
X. Gonze, B. Amadon, P. -M. Anglade, J. -M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G. -M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger, ABINIT: First-principles approach of materials and nanosystem properties. Computer Physics Communications, 180 (2009).
DOI: 10.1016/j.cpc.2009.07.007
Google Scholar
[7]
S. Lebegue, S. Arnaud, M. Alouani, P. Bloechl, Implementation of an all-electron GW approximation based on the projector augmented wave method without plasmon pole approximation: Application to Si, SiC, AlAs, InAs, NaH, and KH, Phys. Rev. B 67 (2003).
DOI: 10.1103/physrevb.67.155208
Google Scholar
[8]
F. Bruneval, N. Vast, and L. Reining, Effect of self-consistency on quasiparticles in solids, Phys. Rev. B 74 (2006) 045102 (15).
DOI: 10.1103/physrevb.74.045102
Google Scholar
[9]
N.A.W. Holzwarth, A.R. Tackett, G.E. Matthews, A projector augmented wave (PAW) code for electronic structure calculations, Part I: atompaw for generating atom-centered functions, Computer Physics Communications, 135 (2001) 329-347.
DOI: 10.1016/s0010-4655(00)00244-7
Google Scholar
[10]
Y. Chornodolskyy, S. Syrotyuk, G. Stryganyuk, A. Voloshinovskii, P. Rodnyi, Electronic energy structure and core-valence luminescence of ABX3 (A = K, Rb, Cs; B = Ca; X = F) crystals, Journal of physical studies, 11 (2007) 421–426.
DOI: 10.30970/jps.11.421
Google Scholar