Properties and Potential Applications of Ferromagnetic Nanostructures in Medicine and Microwave Engineering

Article Preview

Abstract:

Three types of ferromagnetic nanostructures based on barium hexaferrite (BaFe12O19), lanthanum-strontium manganites with perovskite structure ((La,Sr)MnO3) and materials with spinel structure (AFe2O4, A = Ni, Zn, Co, Mn, Fe) have been synthesized by precipitation from aqueous and nonaqueous solutions, by the sol-gel method and from microemulsions. Magnetic properties of the synthesized nanoparticles and films have been investigated. It was shown that the obtained nanoparticles exhibit superparamagnetic properties. It has been found that the synthesized nanoparticles have promise in hyperthermia of cancer cells. It has been shown that the films based on barium hexaferrite can have promise in the creation of nonlinear resonant microwave elements on the basis of high-Q dielectric resonators and ferromagnetic films.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 230)

Pages:

95-100

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.P. Gubin, Y.A. Koksharov, G.B. Khomutov, G.Y. Yurkov, Magnetic nanoparticles: preparation methods, structure and properties, Uspekhi Khimii (in Rus). 74 (2005) 539-574.

DOI: 10.1070/rc2005v074n06abeh000897

Google Scholar

[2] T.S. Cho, S.J. Doh, J.H. Je, D.Y. Noh, Thickness dependence of the crystallization of Ba-ferrite films, J. Appl. Phys. 86 (1999) 1958–(1964).

DOI: 10.1063/1.370993

Google Scholar

[3] J.S. Weinstein, C.G. Varallyay, E. Dosa, S. Gahramanov, B. Hamilton, W.D. Rooney, L.L. Muldoon, E.A. Neuwelt, Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, J. Cereb. Blood Flow Metab. 30 (2010).

DOI: 10.1038/jcbfm.2009.192

Google Scholar

[4] I. Sharifi, H. Shokrollahi, S. Amiri, Ferrite-based magnetic nanofluids used in hyperthermia applications, J. Magn. Magn. Mater. 324 (2012) 903–915.

DOI: 10.1016/j.jmmm.2011.10.017

Google Scholar

[5] V.G. Harris, Z. Chen, Y. Chen, S. Yoon, T. Sakai, A. Gieler, A. Yang, Y. He, K. S. Ziemer, N. X. Sun, C. Vittoria, Ba-hexaferrite films for next generation microwave devices, J. Appl. Phys. 99 (2006) 08M911–08M911–5.

DOI: 10.1063/1.2165145

Google Scholar

[6] M. Fiebig, Revival of the Magnetoelectric effect, J. Phys. D: Appl. Phys. 38 (2005) R123–R152.

DOI: 10.1088/0022-3727/38/8/r01

Google Scholar

[7] A. Lisfi, L.T. Nguyen, J.C. Lodder, C.M. Williams, H. Corcoran, P. Chang, A. Johnson, W. Morgan, J. Magn. Magn. Mater. 219 (2005) 290–291.

Google Scholar

[8] A.G. Belous, O.I. V'yunov, E.V. Pashkova, O.Z. Yanchevskii, A.I. Tovstolytkin, A.M. Pogorelyi, Effects of chemical composition and sintering temperature on the structure of La1-xSrxMnO3±􀈖 solid solutions, J. Inorg. Mater. 39 (2003) 161–170.

DOI: 10.1023/a:1022198613723

Google Scholar

[9] E.V. Pashkova, E.D. Solovyova, I.E. Kotenko, T.V. Kolodiazhnyi, A.G. Belous, Effect of preparation conditions on fractal structure and phase transformations in the synthesis of nanoscale M-type barium hexaferrite, J. Magn. Magn. Mater. 323 (2011).

DOI: 10.1016/j.jmmm.2011.05.026

Google Scholar

[10] S.A. Solopan, Ye.D. Fateev, A.G. Belous, Peculiarities of the synthesis of weakly agglomerated Fe3O4 nanoparticles from microemulsions, Ukrainian Chemical Journal (in Rus). 78 (2012) 3–8.

Google Scholar

[11] A.G. Belous. Microwave dielectrics based on complex oxide systems, in: M.A. Silgary (Ed. ) Dielectric materials, InTech, 2012, p.113–152.

Google Scholar

[12] R. Kappiyoor, M. Liangruksa, R. Ganguly, I. Puri The effects of magnetic nanoparticle properties on magnetic fluid hyperthermia, J. Appl. Phys. 108 (2010) p.094702.

DOI: 10.1063/1.3500337

Google Scholar

[13] К. Khizenkov, G.V. Englezi, Inductive radio_frequency hyperthermia and low_frequency magnetotherapy of apical periodontites, Medical Transport of Ukr. (in Ukr). 3 (2005) 75–78.

Google Scholar

[14] P.G. Kondratenko, M.V. Кonkova, E.A. Raksha-Sljusareva, A.A. Sljusarev, D.V. Sobolev, The immunology status and ultrasonic monitoring on regenerative processes in a purulent wound under influence of a variable electromagnetic field with magnetized particles, Ukrainian Journal of Surgery (in Rus), 1 (2008).

Google Scholar

[15] O.V. Yelenich, S.O. Solopan, T.V. Kolodiazhnyi, V.V. Dzyublyuk, A.I. Tovstolytkin, A.G. Belous. Superparamagnetic behavior and ac-losses in NiFe2O4 nanoparticles, Sol. St. Sci. 20 (2013) 115–119.

DOI: 10.1016/j.solidstatesciences.2013.03.013

Google Scholar

[16] S. Solopan, А. Belous, A. Yelenich, L. Bubnovskaya, A. Kovelskaya, A. Podoltsev, I. Kondratenko, S. Osinsky. Nanohyperthermia of malignant tumors. I. Lanthanum-strontium manganite magnetic fluid as potential inducer of tumor hyperthermia, Exp. Oncol. 33 (2011).

DOI: 10.1155/2014/278761

Google Scholar

[17] L. Bubnovskaya, A. Belous, A. Solopan, A. Podoltsev, I. Kondratenko, A. Kovelskaya, T. Sergienko, S. Osinsky. Nanohyperthermia of malignant tumors. II. in vivo tumor heating with manganese perovskite nanoparticles, Exp. Oncol. 34 (2012) 336–339.

DOI: 10.1155/2014/278761

Google Scholar