Quasistatic Magnetic Properties and Dynamic Hysteretic Losses in (La,Sr)MnO3 Nanoparticles Fabricated by Different Technological Routes

Article Preview

Abstract:

Structural and magnetic characteristics of (La,Sr)MnO3 nanoparticles synthesized by different methods have been studied in the work. The specific loss power which is released on the exposure of an ensemble of synthesized particles to alternating magnetic field was calculated and measured experimentally. The contributions to the specific loss power resulted from different heating mechanisms have been discussed. The directions to enhance the heating efficiency of various kinds of magnetic nanoparticles are outlined

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 230)

Pages:

101-107

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.P. Gubin, Yu.A. Koksharov, G.B. Khomutov, G. Yu. Yurkov, Magnetic nanoparticles: preparation, structure and properties, Russian Chemical Reviews 74 (2005), 489-520.

DOI: 10.1070/rc2005v074n06abeh000897

Google Scholar

[2] V.M. Kalita, A.F. Lozenko, S.M. Ryabchenko, A.A. Timopheeev, R.A. Trotsenko, I.A. Danilenko and T.E. Konstantinova, Magnetic properties of La0. 7Sr0. 3MnO3 nanopowders, Low Temp. Phys. 34 (2008), 436-445.

DOI: 10.1063/1.2920124

Google Scholar

[3] S. Solopan, А. Belous, A. Yelenich, L. Bubnovskaya, A. Kovelskaya, A. Podoltsev, I. Kondratenko, and S. Osinsky, Nanohyperthermia of malignant tumors. I. Lanthanum-strontium manganite magnetic fluid as potential inducer of tumor hyperthermia, Experimental Oncology 33 (2011).

DOI: 10.1155/2014/278761

Google Scholar

[4] A. Belous, S. Solopan, A. Yelenich, L. Bubnovskaya, S. Osinsky, Nanoparticles of ferromagnetic materials and possibilities of their application in the hyperthermia of malignant tumors, Proc. IEEE XXXIII International Scientific Conference on Electronics an Nanotechnology (2013).

DOI: 10.1109/elnano.2013.6552060

Google Scholar

[5] A.K. Pradhan, R. Bah, R.B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, and R.R. Rakhimov, Synthesis and magnetic characterizations of manganite-based composite nanoparticles for biomedical applications, J. Appl. Phys. 103 (2008), 07F704 (1-3).

DOI: 10.1063/1.2829906

Google Scholar

[6] A.I. Tovstolytkin, A.N. Pogorily, S.V. Cherepov, G.V. Bondarkova, V.I. Silantiev, Effect of microstructure on transport and magnetoresistance properties of bulk polycrystalline La0. 825Sr0. 175MnO3-d samples, Metallofizika i Noveishie Tekhnologii 22 (2000).

Google Scholar

[7] E. Pollert, O. Kaman, P. Veverka, M. Veverka, M. Marysko, K. Zaveta, M. Kacenka, I. Lukes, P. Jendelova, P. Kaspar, M. Burian, and V. Herynek, Core-shell La1-xSrxMnO3 nanoparticles as colloidal mediators for magnetic fluid hyperthermia, Phil. Trans. Roy. Soc. A 368 (2010).

DOI: 10.1098/rsta.2010.0123

Google Scholar

[8] A.G. Belous, O.I. V'yunov, E.V. Pashkova, O.Z. Yanchevskii, A.I. Tovstolytkin, A.M. Pogorelyi, Effects of chemical composition and sintering temperature on the structure of La1-xSrxMnO3±d solid solutions, Inorganic Materials 39 (2003), 161-170.

DOI: 10.1023/a:1022198613723

Google Scholar

[9] D.H. Manh, P.T. Phong, P.H. Nam, D.K. Tung, N.X. Phuc, In-Ja Lee, Structural and magnetic study of La0. 7Sr0. 3MnO3 nanoparticles and AC magnetic heating characteristics for hyperthermia applications, Physica B 444 (2014), 94-102.

DOI: 10.1016/j.physb.2014.03.025

Google Scholar

[10] O.V. Yelenich, S.O. Solopan, T.V. Kolodiazhnyi, V.V. Dzyublyuk, A.I. Tovstolytkin, A.G. Belous, Superparamagnetic behavior and AC-losses in NiFe2O4 nanoparticles, Solid State Sciences 20 (2013), 115-119.

DOI: 10.1016/j.solidstatesciences.2013.03.013

Google Scholar

[11] J. Carrey, B. Mehdaoui, and M. Respaud, Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization, J. Appl. Phys. 109 (2011), 083921 (1-17).

DOI: 10.1063/1.3551582

Google Scholar

[12] D. Caruntu, Y. Remond, Nam Hawn Chou, Moo-Jin Jun, G. Caruntu, Jibao He, G. Goloverda, Charles O'Connor, and V. Kolesnichenko, Reactivity of 3d transition metal cations in diethylene glycol solutions. Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions, Inorganic Chemistry 41 (2002).

DOI: 10.1021/ic025664j

Google Scholar

[13] S.A. Solopan, Ye.D. Fateev, A.G. Belous, Peculiarities of the synthesis of low-agglomerated nanoparticles Fe3O4 from microemulsions, Ukrainian Chemistry Journal 78 (2012), 3-8.

Google Scholar

[14] B.L. Cushing, V.L. Kolesnichenko, and Ch. J. O'Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles, Chem. Rev. 104 (2004), 3893-3946.

DOI: 10.1021/cr030027b

Google Scholar

[15] D.M. Vriezema, M. Comellas Aragones, J.A. Elemans, J.J. Cornelissen, A.E. Rowan, and R.J. Nolte, Self-assembled nanoreactors, Chem. Rev. 105 (2005), 1445-1489.

DOI: 10.1021/cr0300688

Google Scholar

[16] O.V. Yelenich, S.O. Solopan, T.V. Kolodiazhnyi, V.V. Dzyublyuk, A.I. Tovstolytkin, A.G. Belous, Magnetic properties and high heating efficiency of ZnFe2O4 nanoparticles, Mater. Chem. Phys. 146 (2014), 129-135.

DOI: 10.1016/j.matchemphys.2014.03.010

Google Scholar

[17] A. Rashid, A. Ahmed, S.N. Ahmad, S.A. Shaheen, S. Manzoor, Study of specific absorption rate of strontium doped lanthanum manganite nanoparticles for self-controlled hyperthermia applications, J. Magn. Magn. Mater. 347 (2013), 39-44.

DOI: 10.1016/j.jmmm.2013.07.045

Google Scholar

[18] M. Kallumadil, M. Tada, T. Nakagawa, M. Abe, P. Southern, Q.A. Pankhurst, Suitability of commercial colloids for magnetic hyperthermia, J. Magn. Magn. Mater. 321 (2009), 1509-1513.

DOI: 10.1016/j.jmmm.2009.06.069

Google Scholar

[19] V.E. Legg, Analysis of quality factor of annular core inductors, Bell Labs Technical Journal 39 (1960), 105-126.

DOI: 10.1002/j.1538-7305.1960.tb03924.x

Google Scholar

[20] D. -X. Chen, V. Skumryev, and H. Kronmuller, AC susceptibility of a spherical Nd2Fe14B single crystal, Phys. Rev. B 46 (1992), 3496-3505.

Google Scholar

[21] E.C. Stoner and E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys, Phil. Trans. Roy. Soc. A 240 (1948), 599-642.

Google Scholar