Structure Ordering in Mg-Zn Ferrite Nanopowders Obtained by the Method of Sol-Gel Autocombustion

Article Preview

Abstract:

The Mg1-xZnxFe2O4 (x = 0, 0.2, 0.44, 0.5, 0.6) ferrite nanopowders of the spinel structure obtained by the sol-gel autocombustion (SGA) have been investigated using the X-ray diffraction and Mössbauer methods. The proofs were revealed verifying the potential occurrence of structural heterogeneity as solid solutions of various compositions of ferrites can be observed in a single phase system. In case of magnesium–zinc replacement, structural components occur, having different distribution of ferrum cations in crystallographic positions of the spinel lattice. The abnormal strength of nuclear effective fields is the indicator thereof. In addition, paramagnetic and superparamagnetic components were discovered there as well. This effect cannot be observed in the ferrite synthesis by the ceramic method.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 230)

Pages:

114-119

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.E. Vandenberghe, E. de Grave, Mössbauer effect studies of oxidic spinels , in: G.J. Long, F. Grandjean (Eds. ), Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 3, Plenum press, New York and London, 1989, pp.59-182.

DOI: 10.1007/978-1-4899-2289-2_3

Google Scholar

[2] P.K. Chakrabarti, B.K. Nath., S. Brahma, S. Das, K. Goswami, U. Kumar, P.K. Mukhopadhyay, D. Das, M. Ammar, F. Mazaleyrat, Magnetic and hyperfine properties of nanocristalline Ni0. 2Zn0. 6Cu0. 2Fe2O4 prepared by a chemical route, Journal of Physics Condensed Matter., 18 (2006).

DOI: 10.1088/0953-8984/18/22/023

Google Scholar

[3] Z.A. Samoilenko, N.N. Ivakhnenko, V.P. Pashchenko, O.V. Kopaev, B.K. Ostafiichuk, I.M. Gasyuk, Evolution of short-range, mesoscopic, and long-range orders in magnesium-zinc ferrites, Technical Physics, 47(2002) 364-367.

DOI: 10.1134/1.1463129

Google Scholar

[4] B.K. Ostafiychuk, O.V. Kopayev, I.M. Gasyuk, and V.P. Paschenko, Study of magnetically ordered structure formation in magnesium-zinc ferrites using Moessbauer method, Functional materials, 8 (2001)502-507.

Google Scholar

[5] A.V. Kopayev, B.K. Ostafiychuk, I.Y. Vylka, D.L. Zadnipryannyy, Peculiarities of nickel-aluminium ferrites nanopowder structure, Mat. -wiss. u. Werkstoffen, 40 (2009) 255-257.

DOI: 10.1002/mawe.200900436

Google Scholar

[6] C. Upadhyay, H.C. Verma, S. Anand, Cation distribution in nanosized Ni–Zn ferrites, J. Appl. Phys, 95(2004) 5746-5751.

DOI: 10.1063/1.1699501

Google Scholar

[7] H.H. Joshi, R.G. Kulkarni, Susceptibility, magnetization and Mössbauer studies of the Mg-Zn ferrite system, J. Mat. Sci. , 21( 1986 ) 2138 – 2142.

DOI: 10.1007/bf00547960

Google Scholar

[8] AR. West, Solid State Chemistry and its Applications, John Willey and Sons, New York, (1984).

Google Scholar

[9] C.S. Kim, W.C. Kim, S.Y. An, S.W. Lee, Structure and Mössbauer studies of Cu-doped Ni-Zn ferrite, J. Magn. Magn. Mater, 215-216(2000) 213-216.

DOI: 10.1016/s0304-8853(00)00120-7

Google Scholar

[10] B. Antic, N. Jovic, M.B. Pavlovic, A. Kremenovic, D. Manojlovic, M. Vucinic-Vasic, and A.S. Nicolic, Magnetization enhancement in nanostructured random type MgFe2O4 spinel by soft mechanochemical route, J. Appl. Phys., 107 (2010).

DOI: 10.1063/1.3319563

Google Scholar

[11] R.G. Kulkarni and H.H. Joshi, The magnetic properties of the Mg-Zn ferrite system by Mössbauer spectroscopy, Solid State Commun., 53(1985) 1005-1008.

DOI: 10.1016/0038-1098(85)90479-x

Google Scholar