Li+-Doping-Induced Changes of Phase Composition in Electrodeposited Manganese(IV) Oxide Materials

Article Preview

Abstract:

The impact of Li+ dopant-ions in fluorine-containing electrolytes on electrodeposited manganese (IV) oxide material was under investigation in this paper. The dependence of phase composition of this material at Li+-concentration range in the electrolyte below the stoichiometric content of lithium in hollandite A2Mn8O16 (Mn:Li ≈ 4:1) was established. The hollandite phase stabilization as a template effect caused by Li+-ions is gradually reduced with the Li+ concentration growth from 0.025 to 0.15mol∙L-1 LiOH concentration range. The hollandite content sharply drops at close to the stoichiometric Mn:Li ratio for the hollandite phase. In contrary, the concentration of cation-deficient ε-MnO2 becomes significant. Thus, the template effect of Li+ cations at electrolytic doping from fluorine-containing electrolytes consists of stabilization of the hollandite tunnels at longer distance with the size of coherent scattering regions of this phase more than of about 20—50 Å comparing with undoped materials. It is supposed that Li+-ions presence makes tunnel space unavailable unlike water molecules or ammonium cations. Therefore, to realise molecular sieves based on manganese (IV) oxides the availability of tunnels should be taken into account.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 230)

Pages:

85-92

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.E. Post, Manganese oxide minerals: Crystal structures and economic and environmental significance, Proc. Natl. Acad. Sci. USA 96 (1999) 3447—3454.

DOI: 10.1073/pnas.96.7.3447

Google Scholar

[2] A.F. Wells; Structural Inorganic Chemistry, Oxford University Press, Oxford, (1984).

Google Scholar

[3] T. Rziha, H. Gies, J. Rius, RUB-7, a new synthetic manganese oxide structure type with a 2 times 4 tunnel, European Journal of Mineralogy 8(4)(1996) 675-686.

DOI: 10.1127/ejm/8/4/0675

Google Scholar

[4] A. Kitajou, T. Suzuki, S. Nishihamaand K. Yoshizuka, Selective recovery of lithium from seawaterusing a novel MnO2type adsorbent II – enhancement of lithium ion selectivity of the adsorbent, Ars SeparatoriaActa 2 (2003) 97-106.

Google Scholar

[5] H.U. Beyeler Phys. Rev. Lett. 37 (1976) 1557–1560.

Google Scholar

[6] A.E. Ringwood, S.E. Kesson, N.G. Ware, W. Hibberson, Nature (London) 278 (1979) 219–223.

Google Scholar

[7] N.D. Ivanova, S.V. Ivanov, E.I. Boldyrev, G.V. Sokol'skii, I.S. Makeeva, High-performance manganese oxide catalysts for CO oxidation, Russian journal of applied chemistry 75 (2002) 1420-1423.

DOI: 10.1023/a:1022216626347

Google Scholar

[8] H.C. Genuino, S. Dharmarathna, E.C. Njagi, M.C. Mei, and S.L. Suib, Gas-Phase Total Oxidation of Benzene, Toluene, Ethylbenzene, and Xylenes Using Shape-Selective Manganese Oxide and Copper Manganese Oxide Catalysts, J. Phys. Chem. C 116 (2012).

DOI: 10.1021/jp301342f

Google Scholar

[9] V.D. Makwana, L. J Garces, Jun Cai, Young-Chan Son, S. L. Suib. Selective oxidation of alcohols using octahedral molecular sieves: influence of synthesis method and property–activity relations, Catalysis Today 85 (2003) 225-233.

DOI: 10.1016/s0920-5861(03)00390-0

Google Scholar

[10] G.V. Sokol'skii, S.V. Ivanov, N.D. Ivanova, E.I. Boldyrev, T.F. Lobunets, Doped manganese(IV) oxide in processes of destruction and removal of organic compounds from aqueous solutions, Journal of Water Chemistry and Technology 34 (5) (2012).

DOI: 10.3103/s1063455x12050037

Google Scholar

[11] J.S. Rebello, P.V. Samant, J.L. Figueiredo, J.B. Fernandes. Enhanced electrocatalytic activity of carbon-supported MnOx/Ru catalysts for methanol oxidation in fuel cells, Journal of Power Sources 153 (2006) 36-40.

DOI: 10.1016/j.jpowsour.2005.03.005

Google Scholar

[12] TPJ Crompton, Battery Reference Book, 3d ed., (2000).

Google Scholar

[13] N.D. Ivanova, E.I. Boldyrev, S.V. Ivanov, G.V. Sokol'skii, I.S. Makeeva Comparative Characteristics of Chemical Power Cells Based on MnO2-Zn Systems with Various Manganese Dioxide Samples, Russian Journal of Applied Chemistry 75 (2002) 935-938.

DOI: 10.1023/a:1020332628681

Google Scholar

[14] B. Peng, J. Chen, Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells, Coord. Chem Rev, 253(2009) 2805–2813.

DOI: 10.1016/j.ccr.2009.04.008

Google Scholar

[15] J. Brenet, Electrochemical behaviour of metallic oxides, J. Power Sources 4 (1979) 183.

Google Scholar

[16] P. Ruetschi,  R. Giovanioli, J. Electrochem. Soc. 135(1988) 2663.

Google Scholar

[17] Y. Chabre, J. Pannetier, Structural and electrochemical properties of the proton / γ-MnО2 system, Prog. Solid State Chemistry, 23(1995) 101—105.

Google Scholar

[18] M. Kakazey, N. Ivanova, Y. Boldyrev, S. Ivanov, G. Sokolsky et al, Electron Paramagnetic Resonance in MnO2 Powders and Comparative Estimation of Electric Characteristics of Power Sources Based on them in the MnO2-Zn System, Journal of Power Sources, 114 (2003).

DOI: 10.1016/s0378-7753(02)00595-5

Google Scholar

[19] C. Zener, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure, Phys. Rev. 82 (1951) 403—405.

DOI: 10.1103/physrev.82.403

Google Scholar

[20] M. Kakazey, N. Ivanova, G. Gonzalez-Rodriguez, G. Sokolsky, Electron Paramagnetic Resonance in Disperse MnO2, Electrochemical and Solid-State Letters 4 (2001) J1-J4.

DOI: 10.1149/1.1357699

Google Scholar

[21] N.D. Ivanova, E.I. Boldyrev, I.S. Makeeva, G.V. Sokol'skii. Making manganese dioxide from fluorine-bearing electrolytes. Zhurn. Prikl. Khimii 71 (1998) 121-123.

Google Scholar

[22] D. Chateigner. Combined analysis: structure-texture-microstucture-phase-stresses-reflectivity determination by X-ray and neutron scattering. http: /cel. archives-ouvertes. fr/docs/00/10/90/40/PDF/combined. pdf.

Google Scholar

[23] W. Kraus, G. Nolze, POWDER CELL — a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, J. Appl. Crystallogr. vol. 29, 1996, pp.301-303.

DOI: 10.1107/s0021889895014920

Google Scholar

[24] G.V. Sokol'skii, S.V. Ivanov, N.D. Ivanova, E.I. Boldirev, Effects of electrochemical doping of manganese dioxide with copper and lithium on the physicochemical properties, Powder Metallurgy and Metal Ceramics, 45 (2006) 158-162.

DOI: 10.1007/s11106-006-0057-2

Google Scholar

[25] G.V. Sokolsky, S.V. Ivanov, N.D. Ivanova, Ye.I. Boldurev, O.V. Kobulinskaya, M.V. Demchenko, Cobalt additives influence on phase composition and defect structure of manganese dioxide prepared from fluorinecontaining electrolytes, Acta Phys. Polonica A 117 (2010).

DOI: 10.12693/aphyspola.117.86

Google Scholar

[26] G. Horvath, K. Kavazoe, Method for the Calculation of Effective Pore Size Distribution in Molecular Sieve Carbon, J. Chem. Eng. Jpn. 16 (1983) 470-475.

Google Scholar

[27] S.J. Gregg, K.S.W. Sing Adsorption, Surface Area, & Porosity, Academic Press; 2 edition 1982, 303 p.

Google Scholar

[28] G. Sokolsky, N. Ivanova, S. Ivanov, Ye. Boldyrev, Nanostructured electrode materials obtained from fluorine containing electrolytes of manganese with additives of copper(II) or lithium ions, 5th Spring Meeting of the International Society of Electrochemistry (2007).

Google Scholar

[29] Guan-Guang Xia, Wei Tong, Elaine N. Tolentino, Nian-Gao Duan, Stephanie Jin-Yun Wang, and S.L. Suib, Synthesis and Characterization of Nanofibrous Sodium Manganese Oxide with a 2 х 4 Tunnel Structure, Chem. Mater. 13 (2001) 1585 -1592.

DOI: 10.1021/cm000777r

Google Scholar

[30] R.T. Downs, M . Hall-Wallace, The American mineralogist crystal structure database, Am. Mineralog. 88 (2003) 247–250.

Google Scholar

[31] Y.D. Kondrashev, A.I. Zaslavsky, Isv. Akad. Nauk. SSSR Ser. Siz. 15 (1951) 179.

Google Scholar

[32] P.M. De Wolff, J.W. Visser, R. Giovanoli, R. Brutsch, Chimia 32(7) (1978) 257.

Google Scholar

[33] J Zhang, C. W. Burnham, Hollandite-type phases: Geometric consideration of unit-cell size and symmetry, Am. Mineralog., 79 (1994) 168-174.

Google Scholar

[34] C. Fong, B.J. Kennedy, M.M. Elcombe, A powder neutron diffraction study of λ- and γ- manganese dioxide and of Li Mn2O4, Zeitschrift fuer Kristallographie 209 (1994) 941-945.

DOI: 10.1524/zkri.1994.209.12.941

Google Scholar

[35] W.H. Baur, Rutile-type compounds. V. Refinement of MnO2 and MgF2, Acta Cryst. B 32 (1976) 2200-2204.

Google Scholar