Mechanical and Structural Characterization of Rapidly Solidified Al-Fe-Mg Alloys

Article Preview

Abstract:

Series of experiments on a series of Al-Fe-Mg alloys were performed to determine the effect of rapid solidification (RS) on the material strengthening, which result from the refining of thegrain size and intermetallic compound. Additionally, an enhancement of the material strengthening due to magnesium addition was also observed. Manufacture of RS Al-Fe-Mg alloys combined a spraydeposition of the molten alloy on the rotating water-cooled copper roll and plastic consolidation bymeans of powders pressing and hot extrusion methods. The results suggest that the rapid solidification provides an effective method of microstructure refinement and, in combination with solid solutionhardening due to Mg, leads to significant improvement of mechanical properties of Al-Fe-Mg based alloys.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 231)

Pages:

11-18

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Kula, L. Blaz, M. Sugamata, Structural and mechanical features of rapidly solidified Al-2Fe-2Ni-5Mg alloy, Solid State Phenom. 186 (2012) 279-282.

DOI: 10.4028/www.scientific.net/ssp.186.279

Google Scholar

[2] L.F. Mondolfo, Aluminum alloys: structure and properties, London, England: Butterworth & Co. (Publishers) Ltd (1967).

Google Scholar

[3] O.N. Senkov, F.H. Froes, V.V. Stolyarov, R.Z. Valiev and J. Liu, Microstructure of aluminum-iron alloys subjected to sever plastic deformation, Scripta Mat. 38 (1998) 1511-1516.

DOI: 10.1016/s1359-6462(98)00073-6

Google Scholar

[4] E.J. Lavernia, T.S. Srivatsan, The rapid solidification processing of materials: science, principles, technology, advances, and applications, J. Mater. Sci. 45 (2010) 287-325.

DOI: 10.1007/s10853-009-3995-5

Google Scholar

[5] F.H. (Sam) Froes, O.N. Senkov, E.G. Baburaj, Synthesis of nanocrystalline materials – an overview, Mat. Sci. Eng. A 301 (2001) 44-53.

DOI: 10.1016/s0921-5093(00)01391-5

Google Scholar

[6] S.S. Nayak, M. Wollgarten, J. Banhart, S.K. Pabi, B.S. Murty, Nanocomposites and an extremely hard nanocrystalline intermetallic of Al–Fe alloys prepared by mechanical alloying, Mat. Sci. Eng. A 527 (2010) 2370-2378.

DOI: 10.1016/j.msea.2009.12.044

Google Scholar

[7] F. Audebert, C. Mendive, A. Vidal, Structure and mechanical behaviour of Al–Fe–X and Al–Ni–X rapidly solidified alloys, Mat. Sci. Eng. A 375-377 (2004) 1196-1200.

DOI: 10.1016/j.msea.2003.10.035

Google Scholar

[8] F.T. Tokarski, L. Wzorek, H. Dybiec, Microstructure and plasticity of hot deformed 5083 aluminum alloy produced by rapid solidification and hot extrusion, Arch. Met. Mat. 57 (2012) 1253-1259.

DOI: 10.2478/v10172-012-0140-2

Google Scholar

[9] M. Sugamata, J. Kaneko, N. Kimura, Structure and properties of rapidly solidified P/M samples of Al-Mn-Cr alloys, Mat. Sci. Forum 416-418 (2003) 359-368.

DOI: 10.4028/www.scientific.net/msf.416-418.359

Google Scholar

[10] D. Vojtěch, A. Michalcová, P. Novák, Structural evolution of Al-Cr alloy during processing, Solid State Phenom. 38 (2008) 145-152.

DOI: 10.4028/www.scientific.net/ssp.138.145

Google Scholar

[11] A.J.S. Chowdhury, T. Sheppard, Characteristics of an Al-7Fe-2Mo alloy prepared from RS powders, Key Eng. Mat. 38-39 (1990) 263-276.

DOI: 10.4028/www.scientific.net/kem.38-39.263

Google Scholar

[12] D.J. Skinner, K. Okazaki, High strength Al-Fe-V alloys at elevated temperatures produced by rapid quenching from the melt, Scripta Met. 18 (1984) 905-909.

DOI: 10.1016/0036-9748(84)90258-8

Google Scholar

[13] T. Grosdidier, P. Keramidas. G. Shao, P. Tsakiropoulos, Influence of 2. 8% zirconium addition on the microstructure of rapidly solidified Al-8Fe-4Ni alloy, Mat. Sci. Eng A 267 (1999) 60-70.

DOI: 10.1016/s0921-5093(99)00064-7

Google Scholar

[14] W.J. Boettinger, S.R. Coriell, in Science and Technology of the Undercooled Melt, NATO ASI Series E-N0114, edited by P. R. Sahm, H. Jones and C.M. Adam (Martinus-Nijhoff, Dordrecht), (1986).

Google Scholar

[15] Y-W. Kim, A.G. Jackson, Phases and orientation relationships in a rapidly solidified Al-6Fe-6Ni alloy, Scripta Metall. 20 (1986) 777-782.

DOI: 10.1016/0036-9748(86)90510-7

Google Scholar

[16] A. Kula, L. Blaz, M. Sugamata, Microstructure and mechanical properties of rapidly solidified Al-Fe-Ni-Mg alloys, Mat. Sci. Forum 674 (2011) 165-170.

DOI: 10.4028/www.scientific.net/msf.674.165

Google Scholar

[17] W. Martienssen: Landolt-Börnstein Group IV, Vol. 5. Berlin: Springer (1998).

Google Scholar

[18] C.M. Allen, K.A.Q. O'Reilly, B. Cantor, P.V. Evans, Intermetallic phase selection in 1XXX Al alloys, Prog. Mater. Sci. 43 (1998) 89-170.

DOI: 10.1016/s0079-6425(98)00003-6

Google Scholar

[19] T.T. Sasaki, T. Ohkubo, K. Hono, Microstructure and mechanical properties of bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark plasma sintering, Acta Mat. 57 (2009) 3529-3538.

DOI: 10.1016/j.actamat.2009.04.012

Google Scholar

[20] H.J. McQueen, J.J. Jonas, Plastic defromation of materials; ed. R.J. Arsenault, New York, Academic Press (1975).

Google Scholar

[21] M.Z. Kiper, L. Blaz, M. Sugamata, Effect of magnesium addition and rapid solidification procedure on structure and mechanical properties of Al-Co alloy, Arch. Met. Mat. 58 (2013) 399-406.

DOI: 10.2478/amm-2013-0007

Google Scholar

[22] M.Z. Kiper, L. Blaz, M. Sugamata, Effect of magnesium addition on properties of Al-based composite reinforced with fine NiO particles, Arch. Met. Mat. 59 (2014) 431-435.

DOI: 10.2478/amm-2014-0071

Google Scholar