Pressure Effects on Transport Properties of (La0.85Sr0.15)yMnO3 Single Crystals

Article Preview

Abstract:

We have studied single crystals with same La/Sr ratio but different initial Mn concentration, namely (La0.85Sr0.15)0.93MnO3 and (La0.85Sr0.15)0.97MnO3. We have observed, that the temperature of insulator-metal transition TIM increases for both samples and the temperature of charge ordering TCO increases for (La0.85Sr0.15)0.93MnO3 and decreases for (La0.85Sr0.15)0.97MnO3 with the external hydrostatic pressure in the range of 0.1 MPa - 1.3 GPa. After analysis of obtained dependence, we have concluded that (La0.85Sr0.15)0.97MnO3 sample has higher concentration of Mn vacancy. Thereby we suppose that growth of Mn vacancy concentration decreases transfer interaction of the conducting electrons and enhances charge ordering of Mn3+ and Mn4+ ions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 233-234)

Pages:

273-276

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Von. Helmolt, J. Wecker, B. Holzapfel, L. Schultz, andK. Samwer, Phys. Rev. Lett. 71, 2331 (1993).

Google Scholar

[2] S. Jin, T. H. Tiefel, R. Ramesh, and L. H. Chen, Science 264, 413 (1994).

Google Scholar

[3] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14 103 (1995).

Google Scholar

[4] Congwu Cui, Trevor A. Tyson, Zhong Zhong, Jeremy P. Carlo, Yuhai Qin, Phys. Rev. B 67, 104107 (2003).

Google Scholar

[5] Z. Arnold, K. Kamenev, M.R. Ibarra P. A. Algarabel, C. Marquina, J. Blasco, and J. García, Appl. Phys. Lett. 67, 2875 (1995).

DOI: 10.1063/1.114814

Google Scholar

[6] J. J. Neumeier, M.F. Hundley, J.D. Thompson and R.H. Heffner, Phys. Rev. B 52, R7006 (1995).

Google Scholar

[7] J. M. De Teresa, M.R. Ibarra and J. Blasco J. García, C. Marquina,P. A. Algarabel,Z. Arnold,K. Kamenev, C. Ritter and R. von Helmolt, Phys. Rev. B 54, 1187 (1996).

Google Scholar

[8] A. Usuhibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Phys. Rev. B 51 (1995) 14103.

Google Scholar

[9] Y. Yamada, O. Hino, S. Nohdo, R. Kanao, T. Inami, S. Katano, Phys. Rev. Lett. 77 (1996) 904.

Google Scholar

[10] J.A.M. Van Roosmalen, E.H.P. Cordfunke, R.B. Helmholdt, H.W. Zandbergen, J. Solid State Chem., 110 (1994) 100-105.

DOI: 10.1006/jssc.1994.1141

Google Scholar

[11] J.A.M. van Roosmalen, E.H.P. Cordfunke, J. Solid State Chem., 110 (1994) 106-108.

Google Scholar

[12] J.A.M. van Roosmalen, E.H.P. Cordfunke, J. Solid State Chem., 110 (1994) 109-112.

Google Scholar

[13] J.A.M. van Roosmalen, P. van Vlaanderen, E.H.P. Cordfunke, W.L. IJdo, D.J.W. IJdo, J. Solid State Chem., 114 (1995) 516-523.

DOI: 10.1006/jssc.1995.1078

Google Scholar

[14] Mitsuru Itoh, Kojiro Nishi, Jian Ding Yu, and Yoshiyuki Inaguma, Phys. Rev. B 55, 14408 (1997).

Google Scholar

[15] D. Prabhakaran, A.I. Coldea, A.T. Boothroyd, S.J. Blundell, J. Crystal Growth, 237–239 (2002) 806-809.

DOI: 10.1016/s0022-0248(01)02035-8

Google Scholar

[16] D. Shulyatev, S. Karabashev, A. Arsenov, Ya. Mukovskii, S. Zverkov, J. Crystal Growth 237–239 (2002) 810-814.

DOI: 10.1016/s0022-0248(01)02037-1

Google Scholar

[17] B. Dabrowski, X. Xiong, Z. Bukowski, R. Dybzinski, P. W. Klamut, J. E. Siewenie, O. Chmaissem, J. Shaffer, C. W. Kimball, J. D. Jorgensen, and S. Short, Phys. Rev. B 60, 7006 (2000).

Google Scholar

[18] J. -S. Zhou, J.B. Goodenough, A. Asamitsu and Y. Tokura, Phys. Rev. Lett. 79, 3234 (1997).

Google Scholar

[19] J. -S. Zhou and J.B. Goodenough, Phys. Rev. B 62, 3834 (2000).

Google Scholar