Structural and Magnetic Properties of Fe73,5Si13,5B9Nb3Cu1 Microwires Produced by Modernized Ulitovsky-Taylor Method

Article Preview

Abstract:

Results of the investigation of the mechanical, elastic and magnetic characteristics of the “thick” Fe73,5Si13,5B9Nb3Cu1 amorphous microwires, produced by the modernized Ulitovsky–Taylor method, are presented. The cores of the Fe73,5Si13,5B9Nb3Cu1 microwires were found to have the stable geometric parameters along their length and the smooth (almost without defects) surface. The microwires are characterized by the high plasticity and the high strength. The stable geometric parameters of the Fe73,5Si13,5B9Nb3Cu1 microwires along their lengths cause the slight dispersion of magnetic anisotropy of the near-surface layers. As a result, the microwires exhibit the high homogeneity of the near-surface local magnetic properties. The strong influence of the stretching and torsion tensions on the remagnetization signal of the microwires was discovered.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 233-234)

Pages:

277-280

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Faxiang Qin, Hua-Xin Peng, Ferromagnetic microwires enabled multifunctional composite materials, Progress in Materials Science, Vol. 58 (2013) pp.183-259.

DOI: 10.1016/j.pmatsci.2012.06.001

Google Scholar

[2] G.F. Taylor, A method of drawing metallic filaments and a discussion of their properties and uses, J. Phys. Rev. Vol. 23, Issue N5 (1924) pp.655-660.

DOI: 10.1103/physrev.23.655

Google Scholar

[3] A.V. Ulitovski, I.M. Maianski, A.I. Avramenco, Method of continuous casting of glass coated microwire, Patent No l28427, USSR, 15. 05. 60. Bulletin No 10, P. 14, (1960).

Google Scholar

[4] E.E. Shalygina, Kyung-Ho Shin, L.M. Bekoeva, Local magnetic properties and micromagnetic structure of FeCuNbSiB amorphous microwires, J. Alloy and Compounds. Vol. 323/324 (2001) pp.451-454.

DOI: 10.1016/s0925-8388(01)01091-x

Google Scholar

[5] P.P. Umnov, V.V. Molokanov, Yu. S. Shalimov, N.V. Umnova, T.R. Chueva, V.T. Zabolotnyi, Peculiarity of production of amorphous wire by Ulitovski- Taylor method with using continuous process of molding, J. Perspective materials, Vol. 2 (2010).

Google Scholar

[6] E.E. Shalygina, M.A. Komarova, V.V. Molokanov, Magnetooptical investigation of the micromagnetic structure and magnetization processes in Co69Fe4Si12B15 amorphous microwires, J. Experimental and Theoretical Physics. 95, No. 3 (2002) pp.511-516.

DOI: 10.1134/1.1513825

Google Scholar

[7] A. Talaat, V. Zhukova, M. Ipatov, J.J. del Val, L. Gonzalez-Legarreta, B. Hernando J.M. Blanco, A. Zhukov, Effect of nanocrystallization on giant magnetoimpedance effect of Fe-based, microwires. Intermetallics. 51 (2014) pp.59-63.

DOI: 10.1016/j.intermet.2014.03.005

Google Scholar

[8] A. Talaat, V. Zhukova, M. Ipatov, J. M. Blanco, L. Gonzalez-Legarreta, B. Hernando,J. J. del Val, J. Gonzalez, A. Zhukov, Optimization of the giant magnetoimpedance effect of Finemet-type microwires through the nanocrystallization, J. Appl. Phys. 115, (2014).

DOI: 10.1063/1.4863484

Google Scholar

[9] C. Dudek, A.L. Adenot-Engelvin, F. Bertin, O. Acher, Engineering of the magnetic properties of Finemet based nanocrystalline glass-coated microwires, J. Non-Crystalline Solids. 353 (2007) 925-927.

DOI: 10.1016/j.jnoncrysol.2006.12.062

Google Scholar

[10] S. Kuramoto, T. Furuta, J.H. Hwang, K. Nishino, T. Saito, Plastic Deformation in a Multifunctional Ti-Nb-Ta-Zr-O Alloy, Metallurg. and Materials Trans. A, 37A (2006), pp.657-662.

DOI: 10.1007/s11661-006-0037-7

Google Scholar