Heat Flow and Defects in Semiconductors: beyond the Phonon Scattering Assumption

Article Preview

Abstract:

It is universally accepted that defects in materials scatter thermal phonons, and that this scattering is the reason why defects reduce the flow of heat relative to the defect-free material. However, ab-initio molecular-dynamics simulations which include defect dynamics show that the interactions between thermal phonons and defects involve the coupling between bulk (delocalized) and defect-related (localized) oscillators. Defects introduce Spatially-Localized Modes (SLMs) which trap thermal phonons for dozens to hundreds of periods of oscillation, much longer than the lifetimes of bulk excitations of the same frequency. When a phonon traps in a SLM, momentum is lost and the decay of localized phonons does not depend on the origin of the excitation but on the availability of receiving modes. This strongly suggests that carefully selected interfaces and/or δ-layers can be used to predict and control the flow of heat.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 242)

Pages:

335-343

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Peierls, Ann. Physik 3 (1929) 1055-1101.

Google Scholar

[2] M. Planck, P.J.W. Debye, W. Nernst, M. v. Smoluchowski, A. Sommerfeld, and H.A. Lorentz, Vorträge über die kinetische Theorie der Materie und der Elektrizität, Teubner, Leipzig, (1914).

DOI: 10.1007/bf01726746

Google Scholar

[3] J. Frenkel, in Wave Mechanics: Elementary Theory, Oxford Univ. Press, Clarendon, 1932, p.265, first used the word phonon' to describe I. Tamm's 'elastic quanta' or 'heat quanta.

Google Scholar

[4] P.G. Klemens, Proc. Phys. Soc. A 68 (1955) 1113-1128; P.G. Klemens, Solid State Physics: Advances and Applications, ed. F. Seitz and D. Turnbull, Academic, New York, 1988, Vol. 7.

Google Scholar

[5] J.M. Ziman, Electrons and Phonons, Oxford, Clarendon, 1960, pp.220-223.

Google Scholar

[6] J. Callaway, Phys. Rev. 113 (1959) 1046-1051.

Google Scholar

[7] A comprehensive review of this literature is in D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, and L. Shi, Appl. Phys. Rev. 1 (2014).

DOI: 10.1063/1.4832615

Google Scholar

[8] M. Stavola, in Hydrogen in Crystalline Semiconductors, edited by S.J. Pearton, J.W. Corbett, and M. Stavola (Springer-Verlag, Berlin, 1991), p.102.

DOI: 10.1007/978-3-642-84778-3_2

Google Scholar

[9] M. Steger, A. Yang, T. Sekiguchi, K. Saeedi, M.L.W. Thewalt, M.O. Henry, K. Johnston, H. Riemann, N.V. Abrosimov, M.F. Churbanov, A.V. Gusev, A.K. Kaliteevskii, O.N. Godisov, P. Becker, and H. -J. Pohl, J. Appl. Phys. 110 (2011) 081301/1-25.

DOI: 10.1063/1.3651774

Google Scholar

[10] T.M. Gibbons, M.B. Bebek, By. Kang, and S.K. Estreicher, submitted.

Google Scholar

[11] M.B. Bebek and S.K. Estreicher, unpublished.

Google Scholar

[12] S.K. Estreicher, T.M. Gibbons, By. Kang, and M.B. Bebek, J. Appl. Phys. 115 (2014) 012012/1-8.

Google Scholar

[13] S.K. Estreicher, T.M. Gibbons, and M.B. Bebek, J. Appl. Phys. 117 (2015) 112801/1-6.

Google Scholar

[14] This use of the eigenvectors of the dynamical matrix was proposed in S.K. Estreicher, D. West, J. Goss, S. Knack, and J. Weber, Phys. Rev. Lett. 90 (2003) 035504/1-4.

Google Scholar

[15] By. Kang and S.K. Estreicher, Phys. Rev. B 89 (2014) 155409/1-9.

Google Scholar

[16] D. West and S.K. Estreicher, Phys. Rev. Lett. 96 (2006) 115504/1-4.

Google Scholar

[17] D. West and S.K. Estreicher, Phys. Rev. B 75 (2007) 075206/1-10.

Google Scholar

[18] K.K. Kohli, G. Davies, N.Q. Vinh, D. West, S.K. Estreicher, T. Gregorkiewicz, and K.M. Itoh, Phys. Rev. Lett. 96 (2006) 225503/1-4.

Google Scholar

[19] T.M. Gibbons, S.K. Estreicher, K. Potter, F. Bekisli, and M. Stavola, Phys. Rev. B 87 (2013) 115207/1-5.

Google Scholar

[20] M. Budde, G. Lüpke, C.P. Cheney, N.H. Tolk, and L.C. Feldman, Phys. Rev. Lett. 85 (2000) 1452-1455.

DOI: 10.1103/physrevlett.85.1452

Google Scholar

[21] G. Lüpke, N.H. Tolk, and L.C. Feldman, J. Appl. Phys. 93 (2003) 2317-2336.

Google Scholar

[22] G. Lüpke, X. Zhang, B. Sun, A. Fraser, N.H. Tolk, and L.C. Feldman, Phys. Rev. Lett. 88 (2002) 135501/1-4.

Google Scholar

[23] B. Sun, G.A. Shi, S.V.S. Nageswara Rao, M. Stavola, N.H. Tolk, S.K. Dixit, L.C. Feldman, and G. Lüpke, Phys. Rev. Lett. 96 (2006) 035501/1-4.

DOI: 10.1103/physrevlett.96.035501

Google Scholar

[24] G. Davies first used this expression during an invited talk at the International Conference on Defects in Semiconductors in St Petersburg, Russia (2007).

Google Scholar

[25] J.  Mikosch, S. Trippel, C. Eichhorn, R. Otto, U. Lourderaj, J.X.  Zhang, W.L. Hase, M. Weidemüller, and R. Wester, Science 319 (2008) 183-186.

DOI: 10.1126/science.1150238

Google Scholar

[26] R.D. Levine and R.B. Bernstein, Molecular Reaction Dynamics and Chemical Reactivity (Oxford University Press, Oxford, 1987).

Google Scholar