Synthesis of Mesoporous CaMoO4 in Aqueous Solution

Article Preview

Abstract:

The mesoporous CaMoO4 microcrystals have been prepared by precipitation in an aqueous solution. The scheelite-type structure in space group I41/a has been verified by the XRD analysis of the final powder product. The CaMoO4 powder is composed of the almost size-uniform erythrocyte-like microspheroids with a diameter of ~5 μm. Every particle is formed by plate-like crystals with the characteristic thickness at a few-nanometer level and a diameter of ~1-2 μm.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 245)

Pages:

80-85

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.V. Atuchin, B.I. Kidyarov, Classification and search for novel binary acentric molybdate and wolframate crystals, J. Korean Cryst. Growth Cryst. Technol. 12 (6) (2002) 323-328.

Google Scholar

[2] V.V. Atuchin, B.I. Kidyarov, N.V. Pervukhina. Phenomenological modeling and design of new acentric crystals for optoelectronics, Comput. Mater. Sci. 30 (2004) 411-418.

DOI: 10.1016/j.commatsci.2004.03.013

Google Scholar

[3] O. Yu. Khyzhun, T. Strunskus, Yu.M. Solonin, XES, XPS and NEXAFS studies of the electronic structure of cubic MoO1. 9 and H1. 63MoO3 thick films, J. Alloys Compd. 366 (2004) 54-60.

DOI: 10.1016/s0925-8388(03)00736-9

Google Scholar

[4] C.V. Ramana, V.V. Atuchin, V.G. Kesler, V.A. Kochubey, L.D. Pokrovsky, V. Shutthanandan, U. Becker, R.C. Ewing, Growth and surface characterization of sputter-deposited molybdenum oxide thin films, Appl. Surf. Sci, 253 (2007) 5368-5374.

DOI: 10.1016/j.apsusc.2006.12.012

Google Scholar

[5] V.V. Atuchin, T.A. Gavrilova, V.G. Kostrovsky, L.D. Pokrovsky, I.B. Troitskaia, Morphology and structure of hexagonal MoO3 nanorods, Inorg. Mater. 44 (6) (2008) 622-627.

DOI: 10.1134/s0020168508060149

Google Scholar

[6] V.V. Atuchin, O.D. Chimitova, T.A. Gavrilova, M.S. Molokeev, Sung-Jin Kim, N.V. Surovtsev, B.G. Bazarov, Synthesis, structural and vibrational properties of microcrystalline RbNd(MoO4)2, J. Cryst. Growth 318 (2011) 683-686.

DOI: 10.1016/j.jcrysgro.2010.09.076

Google Scholar

[7] Chang Sung Lim, Solid-state metathetic synthesis of BaMO4 (M = W, Mo) assisted by microwave irradiation, J. Ceram. Pross. Res. 12 (5) (2011) 544-548.

Google Scholar

[8] V.V. Atuchin, T.A. Gavrilova, T.I. Grigorieva, N.V. Kuratieva, K.A. Okotrub, N.V. Pervukhina, N.V. Surovtsev, Sublimation growth and vibrational microspectrometry of a-MoO3 single crystals, J. Cryst. Growth 318 (2011) 987-990.

DOI: 10.1016/j.jcrysgro.2010.10.149

Google Scholar

[9] S. Rajagopal, D. Nataraj, O. Yu. Khyzhun, Yahia Djaoued, Jacques Robichaud, K. Senthil, D. Mangalaraj, Systematic synthesis and analysis of change in morphology, electronic structure and photoluminescence properties of pyrazine intercalated MoO3 hybrid nanostructures, Cryst. EngComm 13 (2011).

DOI: 10.1039/c0ce00303d

Google Scholar

[10] V.V. Atuchin, V.G. Grossman, S.V. Adichtchev, N.V. Surovtsev, T.A. Gavrilova, B.G. Bazarov, Structural and vibrational properties of microcrystalline TlM(MoO4)2 (M = Nd, Pr) molybdates, Opt. Mater. 34 (5) (2012) 812-816.

DOI: 10.1016/j.optmat.2011.11.016

Google Scholar

[11] V.V. Atuchin, M.S. Molokeev, G. Yu. Yurkin, T.A. Gavrilova, V.G. Kesler, N.M. Laptash, I.N. Flerov, G.S. Patrin, Synthesis, structural, magnetic, and electronic properties of cubic CsMnMoO3F3 oxyfluoride, J. Phys. Chem. C 116 (2012) 10162-10170.

DOI: 10.1021/jp302020f

Google Scholar

[12] V.V. Atuchin, O.D. Chimitova, S.V. Adichtchev, B.G. Bazarov, T.A. Gavrilova, M.S. Molokeev, N.V. Surovtsev, Zh.G. Bazarova, Syhtnesis, structural and vibrational properties of microcrystalline b-RbSm(MoO4)2, Mater. Lett. 106 (2013) 26-29.

DOI: 10.1016/j.matlet.2013.04.039

Google Scholar

[13] Chang Sung Lim, Upconversion photoluminescence properties of SrY2(MoO4)4: Er3+/Yb3+ phosphors synthesized by a cyclic microwave-modified sol-gel method, Infrared Phys. Techn. 67 (2014) 371-376.

DOI: 10.1016/j.infrared.2014.08.018

Google Scholar

[14] V.V. Atuchin, A.S. Aleksandrovsky, O.D. Chimitova, T.A. Gavrilova, A.S. Krylov, M.S. Molokeev, A.S. Oreshonkov, B.G. Bazarov, J.G. Bazarova, Synthesis and spectroscopic properties of monoclinic a-Eu2(MoO4)3, J. Phys. Chem. C 118 (28) (2014).

DOI: 10.1021/jp5040739

Google Scholar

[15] D.A. Spassky, V.N. Shlegel, N.V. Ivannikova, A.P. Yelisseyev, A.N. Belsky, Luminescent properties of Pb2MoO5 single crystals, Opt. Mater. 42 (2015) 430-434.

DOI: 10.1016/j.optmat.2015.01.041

Google Scholar

[16] Jun Ho Chung, Jeong Ho Ryu, Sung Wook Mhin, Kang Min Kim and Kwang Bo Shim, Controllable white upconversion luminescence in Ho3+/Tm3+/Yb3+ co-doped CaMoO4, J. Mater. Chem. 2012, 22, 3997-4002.

DOI: 10.1039/c2jm15332g

Google Scholar

[17] A.K. Parchur, A.I. Prasad, A.A. Ansari, S.B. Rai, R.S. Ningthoujam, Luminescence properties of Tb3+-doped CaMoO4 nanoparticles: annealing effect, polar medium dispersible, polymer film and core–shell formation , Dalton Trans. 2012, 41, 11032-11045.

DOI: 10.1039/c2dt31257c

Google Scholar

[18] N. Sharma, K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, Z. L. Dong, T. J. White, Carbon-coated nanophase CaMoO4 as anode material for Li ion batteries, Chem. Mater. 16 (3) (2004) 504-512.

DOI: 10.1002/chin.200415017

Google Scholar

[19] V.V. Atuchin, T.A. Gavrilova, S.A. Gromilov, V.G. Kostrovsky, L.D. Pokrovsky, I.B. Troitskaia, R.S. Vemuri, G. Carbajal-Franco, C.V. Ramana, Low-temperature chemical synthesis and microstructure analysis of GeO2 crystals with a-quartz structure, Cryst. Growth Des. 9 (4) (2009).

DOI: 10.1021/cg8010037

Google Scholar

[20] V.V. Atuchin, T.A. Gavrilova, V.G. Kesler, M.S. Molokeev, K.S. Aleksandrov, Low-temperature synthesis and structural properties of ferroelectric K3WO3F3, Chem. Phys. Lett. 493 (2010) 83-86.

DOI: 10.1016/j.cplett.2010.05.023

Google Scholar

[21] V.V. Atuchin, I.B. Troitskaia, O. Yu. Khyzhun, V.L. Bekenev, Yu.M. Solonin, Electronic structure of h-WO3 and CuWO4 nanocrystals, harvesting materials for renewable energy systems and functional devices, Appl. Mech. Mater. 110-116 (2012).

DOI: 10.4028/www.scientific.net/amm.110-116.2188

Google Scholar

[22] L.I. Gongorova, B.G. Bazarov, O.D. Chimitova, A.G. Anshits, T.A. Vereschagina, R.F. Klevtsova, L.A. Glinskaya, Z.G. Bazarova, Crystal structure of a new ternary molybdate Rb5CeZr(MoO4)6, J. Struct. Chem. 53 (2) (2012) 329-333.

DOI: 10.1134/s0022476612020175

Google Scholar

[23] V.V. Atuchin, A.S. Aleksandrovsky, O.D. Chimitova, A.S. Krylov, M.S. Molokeev, B.G. Bazarov, J.G. Bazarova, Zhiguo Xia, Synthesis and spectroscopic properties of multiferroic b¢-Tb2(MoO4)3, Opt. Mater. 36 (2014) 1631-1635.

DOI: 10.1016/j.optmat.2013.12.008

Google Scholar

[24] C.V. Ramana, V.V. Atuchin, I.B. Troitskaia, S.A. Gromilov, V.G. Kostrovsky, G.B. Saupe, Low-temperature synthesis of morphology controlled metastable hexagonal molybdenum trioxide (MoO3), Solid State Commun. 149 (2009) 6-9.

DOI: 10.1016/j.ssc.2008.10.036

Google Scholar

[25] T.A. Gavrilova, O.P. Andreeva, V.V. Atuchin, I.V. Korolkov, I.S. Soldatenkov, Synthesis and micromorphology transformation of monoclinic a-Gd2(MoO4)3, Solid State Phenom. 213 (2014) 165-169.

DOI: 10.4028/www.scientific.net/ssp.213.165

Google Scholar

[26] V.V. Atuchin, Lei Zhu, Soo Hyun Lee, Dae Hyun Kim, Chang Sung Lim, Preparation and optical properties of Sr3V2O8 nanoparticles via microwave-assisted solvothermal route, Asian J. Chem. 26 (5) (2014) 1290-1292.

DOI: 10.14233/ajchem.2014.17211

Google Scholar

[27] V.V. Atuchin, O.P. Andreeva, I.V. Korolkov, E.A. Maximovskiy, C.S. Lim, Low-temperature synthesis and structural properties of PbMoO4 nanocrystals, Asian J. Chem. 26 (5) (2014) 1287-1289.

DOI: 10.14233/ajchem.2014.17210

Google Scholar

[28] V.V. Atuchin, V.V. Kaichev, I.V. Korolkov, A.A. Saraev, I.B. Troitskaia, T.V. Perevalov, V.A. Gritsenko, Electronic structure of noncentrosymmetric a-GeO2 with oxygen vacancy: ab initio calculations and comparison with experiment, J. Phys. Chem. C 118 (7) (2014).

DOI: 10.1021/jp411751c

Google Scholar

[29] G. Ahmad, M.B. Dickenson, B.C. Church, Ye Cai, S.E. Jones, R.R. Naik, J.S. King, C.J. Summers, N. Kröger, K.H. Sandhage, Rapid, room-temperature formation of crystalline calcium molybdate phosphor microparticles via peptide-induced precipitation, Adv. Mater. 18 (2006).

DOI: 10.1002/adma.200600243

Google Scholar

[30] Yong-Song Luo, Xiao-Jun Dai, Wie-Dong Zhang, Yang Yang, Chang Q. Sun, Shao-Yun Fu, Controlable synthesis and luminescent properties of novel erythrocyte-like CaMoO4 hierarchical nanostructures via a simple surfactant-free hydrothermal route, Dalton Trans. 39 (2010).

DOI: 10.1039/b915099d

Google Scholar

[30] Mi Yan, Huang Zai-Yin, Jiang Jun-Ying, Li Yan-Fen, In situ microcalorimetry insight into the CaMoO4 microcrystallites, Acta Phys. – Chim. Sin. 25 (12) (2009) 2422-2426.

DOI: 10.3866/pku.whxb20091215

Google Scholar

[31] S.P. Culver, F.A. Rabuffetti, Shiliang Zhou, M. Macklenburg, Yan Song, B.C. Melot, R.I. Brutchey, Low-temperature synthesis of AMoO4 (A = Ca, Sr, Ba) scheelite nanocrystals, Chem. Mater. 25 (2013) 4129-4134.

DOI: 10.1021/cm402867y

Google Scholar

[32] R.M. Hansen, L.W. Finger, J.W.E. Mariathasan, High-pressure crystal chemistry of scheelite-type tungstates and molybdates, J. Phys. Chem. Solids 46 (2) (1985) 253-263.

DOI: 10.1016/0022-3697(85)90039-3

Google Scholar