Electrophoretic Composite Coatings on Magnesium Alloys

Article Preview

Abstract:

Investigation results of the composite coatings obtained on MA8 magnesium alloy by plasma electrolytic oxidation (PEO) and post-treated by electrophoretic deposition of superdispersed polytetrafluoroethylene (SPTFE) are presented. Comprehensive research of electrochemical and mechanical properties of the obtained polymer-containing coatings on the magnesium alloy has been performed. It has been established that composite coatings to decrease the corrosion current density by three orders of magnitude (down to Ic = 2.0×10-10 A/cm2) and the wear by two orders of magnitude (down to 1.2×10-6 mm3/(N·m)), as compared to the basic PEO-coating.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 245)

Pages:

97-102

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. -X. Wang, G. Fang, M. A. Leeflang, J. Duszczyk, and J. Zhou, Constitutive behavior and microstructure evolution of the as-extruded AE21 magnesium alloy during hot compression testing, J. Alloys Compd. 622 (2015) 121–129.

DOI: 10.1016/j.jallcom.2014.10.006

Google Scholar

[2] A. Pardo, M. C. Merino, A. E. Coy, R. Arrabal, F. Viejo, and E. Matykina, Corrosion behaviour of magnesium/aluminium alloys in 3. 5wt. % NaCl, Corros. Sci. 50 (2008) 823–834.

DOI: 10.1016/j.corsci.2007.11.005

Google Scholar

[3] Q. B. Nguyen, Y. H. M. Sim, M. Gupta, and C. Y. H. Lim, Tribology characteristics of magnesium alloy AZ31B and its composites, Tribol. Int. 82 (2015) 464–471.

DOI: 10.1016/j.triboint.2014.02.024

Google Scholar

[4] S. V Gnedenkov, O. A. Khrisanfova, S. L. Sinebryukhov, A. V Puz, and A. S. Gnedenkov, Composite Protective Coatings on Nitinol Surface, Mater. Manuf. Process. 23 (2008) 879–883.

DOI: 10.1080/10426910802385117

Google Scholar

[5] J. Liang, L. Hu, and J. Hao, "Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes, Appl. Surf. Sci. 253 (2007) 4490–4496.

DOI: 10.1016/j.apsusc.2006.09.064

Google Scholar

[6] H. Tang, Q. Sun, T. Xin, C. Yi, Z. Jiang, and F. Wang, Influence of Co(CH3COO)2 concentration on thermal emissivity of coatings formed on titanium alloy by micro-arc oxidation, Curr. Appl. Phys. 12 (2012) 284–290.

DOI: 10.1016/j.cap.2011.06.023

Google Scholar

[7] S. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, V. S. Egorkin, M. V. Sidorova, and A. S. Gnedenkov, Composite polymer-containing protective coatings on magnesium alloy MA8, Corros. Sci. 85 (2014) 52–59.

DOI: 10.1016/j.corsci.2014.03.035

Google Scholar

[8] A. Ghasemi, V. S. Raja, C. Blawert, W. Dietzel, and K. U. Kainer, Study of the structure and corrosion behavior of PEO coatings on AM50 magnesium alloy by electrochemical impedance spectroscopy, Surf. Coatings Technol. 202 (2008) 3513–3518.

DOI: 10.1016/j.surfcoat.2007.12.033

Google Scholar

[9] H. F. Guo and M. Z. An, Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance, Appl. Surf. Sci. 246 (2005) 229–238.

DOI: 10.1016/j.apsusc.2004.11.031

Google Scholar

[10] H. F. Guo, M. Z. An, H. B. Huo, S. Xu, and L. J. Wu, Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions, Appl. Surf. Sci. 252 (2006) 7911–7916.

DOI: 10.1016/j.apsusc.2005.09.067

Google Scholar

[11] J. Liang, P. B. Srinivasan, C. Blawert, and W. Dietzel, Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation, Corros. Sci. 51 (2009) 2483–2492.

DOI: 10.1016/j.corsci.2009.06.034

Google Scholar

[12] Z. Ghalmi and M. Farzaneh, Durability of nanostructured coatings based on PTFE nanoparticles deposited on porous aluminum alloy, Appl. Surf. Sci. 314 (2014) 564–569.

DOI: 10.1016/j.apsusc.2014.05.194

Google Scholar

[13] D. Zhang, G. Dong, Y. Chen, and Q. Zeng, Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties, Appl. Surf. Sci. 290 (2014) 466–474.

DOI: 10.1016/j.apsusc.2013.11.114

Google Scholar

[14] S. V. Gnedenkov, S. L. Sinebryukhov, V. S. Egorkin, D. V. Mashtalyar, D. A. Alpysbaeva, and L. B. Boinovich, Wetting and electrochemical properties of hydrophobic and superhydrophobic coatings on titanium, Colloids Surfaces A Physicochem. Eng. Asp. 383 (2011).

DOI: 10.1016/j.colsurfa.2011.01.024

Google Scholar

[15] S. V. Gnedenkov, S. L. Sinebryukhov, A. G. Zavidnaya, V. S. Egorkin, A. V. Puz', D. V. Mashtalyar, V. I. Sergienko, A. L. Yerokhin, and A. Matthews, Composite hydroxyapatite–PTFE coatings on Mg–Mn–Ce alloy for resorbable implant applications via a plasma electrolytic oxidation-based route, J. Taiwan Inst. Chem. Eng. 45 (2014).

DOI: 10.1016/j.jtice.2014.03.022

Google Scholar

[16] S. V. Gnedenkov and S. L. Sinebryukhov, Electrochemical Impedance Spectroscopy of Oxide Layers on the Titanium Surface, Russ. J. Electrochem., 41 (2005) 858–865.

DOI: 10.1007/s11175-005-0145-5

Google Scholar