[1]
L. -X. Wang, G. Fang, M. A. Leeflang, J. Duszczyk, and J. Zhou, Constitutive behavior and microstructure evolution of the as-extruded AE21 magnesium alloy during hot compression testing, J. Alloys Compd. 622 (2015) 121–129.
DOI: 10.1016/j.jallcom.2014.10.006
Google Scholar
[2]
A. Pardo, M. C. Merino, A. E. Coy, R. Arrabal, F. Viejo, and E. Matykina, Corrosion behaviour of magnesium/aluminium alloys in 3. 5wt. % NaCl, Corros. Sci. 50 (2008) 823–834.
DOI: 10.1016/j.corsci.2007.11.005
Google Scholar
[3]
Q. B. Nguyen, Y. H. M. Sim, M. Gupta, and C. Y. H. Lim, Tribology characteristics of magnesium alloy AZ31B and its composites, Tribol. Int. 82 (2015) 464–471.
DOI: 10.1016/j.triboint.2014.02.024
Google Scholar
[4]
S. V Gnedenkov, O. A. Khrisanfova, S. L. Sinebryukhov, A. V Puz, and A. S. Gnedenkov, Composite Protective Coatings on Nitinol Surface, Mater. Manuf. Process. 23 (2008) 879–883.
DOI: 10.1080/10426910802385117
Google Scholar
[5]
J. Liang, L. Hu, and J. Hao, "Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes, Appl. Surf. Sci. 253 (2007) 4490–4496.
DOI: 10.1016/j.apsusc.2006.09.064
Google Scholar
[6]
H. Tang, Q. Sun, T. Xin, C. Yi, Z. Jiang, and F. Wang, Influence of Co(CH3COO)2 concentration on thermal emissivity of coatings formed on titanium alloy by micro-arc oxidation, Curr. Appl. Phys. 12 (2012) 284–290.
DOI: 10.1016/j.cap.2011.06.023
Google Scholar
[7]
S. V. Gnedenkov, S. L. Sinebryukhov, D. V. Mashtalyar, V. S. Egorkin, M. V. Sidorova, and A. S. Gnedenkov, Composite polymer-containing protective coatings on magnesium alloy MA8, Corros. Sci. 85 (2014) 52–59.
DOI: 10.1016/j.corsci.2014.03.035
Google Scholar
[8]
A. Ghasemi, V. S. Raja, C. Blawert, W. Dietzel, and K. U. Kainer, Study of the structure and corrosion behavior of PEO coatings on AM50 magnesium alloy by electrochemical impedance spectroscopy, Surf. Coatings Technol. 202 (2008) 3513–3518.
DOI: 10.1016/j.surfcoat.2007.12.033
Google Scholar
[9]
H. F. Guo and M. Z. An, Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance, Appl. Surf. Sci. 246 (2005) 229–238.
DOI: 10.1016/j.apsusc.2004.11.031
Google Scholar
[10]
H. F. Guo, M. Z. An, H. B. Huo, S. Xu, and L. J. Wu, Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions, Appl. Surf. Sci. 252 (2006) 7911–7916.
DOI: 10.1016/j.apsusc.2005.09.067
Google Scholar
[11]
J. Liang, P. B. Srinivasan, C. Blawert, and W. Dietzel, Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation, Corros. Sci. 51 (2009) 2483–2492.
DOI: 10.1016/j.corsci.2009.06.034
Google Scholar
[12]
Z. Ghalmi and M. Farzaneh, Durability of nanostructured coatings based on PTFE nanoparticles deposited on porous aluminum alloy, Appl. Surf. Sci. 314 (2014) 564–569.
DOI: 10.1016/j.apsusc.2014.05.194
Google Scholar
[13]
D. Zhang, G. Dong, Y. Chen, and Q. Zeng, Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties, Appl. Surf. Sci. 290 (2014) 466–474.
DOI: 10.1016/j.apsusc.2013.11.114
Google Scholar
[14]
S. V. Gnedenkov, S. L. Sinebryukhov, V. S. Egorkin, D. V. Mashtalyar, D. A. Alpysbaeva, and L. B. Boinovich, Wetting and electrochemical properties of hydrophobic and superhydrophobic coatings on titanium, Colloids Surfaces A Physicochem. Eng. Asp. 383 (2011).
DOI: 10.1016/j.colsurfa.2011.01.024
Google Scholar
[15]
S. V. Gnedenkov, S. L. Sinebryukhov, A. G. Zavidnaya, V. S. Egorkin, A. V. Puz', D. V. Mashtalyar, V. I. Sergienko, A. L. Yerokhin, and A. Matthews, Composite hydroxyapatite–PTFE coatings on Mg–Mn–Ce alloy for resorbable implant applications via a plasma electrolytic oxidation-based route, J. Taiwan Inst. Chem. Eng. 45 (2014).
DOI: 10.1016/j.jtice.2014.03.022
Google Scholar
[16]
S. V. Gnedenkov and S. L. Sinebryukhov, Electrochemical Impedance Spectroscopy of Oxide Layers on the Titanium Surface, Russ. J. Electrochem., 41 (2005) 858–865.
DOI: 10.1007/s11175-005-0145-5
Google Scholar