[1]
L. Snizhko, A. Yerokhin, N. Gurevina, D. Misnyankin, A. Ciba, A. Matthews, Voltastatic studies of magnesium anodising in alkaline solutions, Surf. Coat. Technol. 205 (2010) 1527-1531.
DOI: 10.1016/j.surfcoat.2010.10.013
Google Scholar
[2]
S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, S.L. Sinebryukhov, V.S. Egorkin et al, PEO coatings obtained on an Mg–Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes, Surf. Coat. Technol. 204 (2010) 2316-2322.
DOI: 10.1016/j.surfcoat.2009.12.024
Google Scholar
[3]
V.S. Rudnev, T.P. Yarovaya, P.M. Nedozorov, A. Yu. Ustinov, L.M. Tyrina, I.V. Malyshev, V.G. Kuryavyi, V.S. Egorkin, S.L. Sinebryukhov, S.V. Gnedenkov, Obtaining ZrO2 + CeOx + TiO2/Ti compositions by plasma electrolytic oxidation of titanium and investigating their properties / Prot. Met. Phys. Chem. Surf. 47 (2011).
DOI: 10.1134/s2070205111050145
Google Scholar
[4]
V.S. Rudnev, T.P. Yarovaya, V.S. Egorkin, S.L. Sinebryukhov, S.V. Gnedenkov, Properties of coatings formed on titanium by plasma electrolytic oxidation in a phosphate-borate electrolyte / Russ. J. Appl. Chem. 83 (2010) 664–670.
DOI: 10.1134/s1070427210040178
Google Scholar
[5]
S.V. Gnedenkov, S.L. Sinebryukhov, A.V. Puz, A.S. Gnedenkov, I.E. Vyaliy, D.V. Mashtalyar, V.S. Egorkin, Plasma electrolytic oxidation coatings formed with microsecond current pulses / Solid State Phenom. 213 (2014) 149–153.
DOI: 10.4028/www.scientific.net/ssp.213.149
Google Scholar
[6]
Y. Gao, A. Yerokhin, A. Matthews, DC plasma electrolytic oxidation of biodegradable cp-Mg: In-vitro corrosion studies / Surf. Coat. Tech. 234 (2013) 132–142.
DOI: 10.1016/j.surfcoat.2012.11.035
Google Scholar
[7]
S. Stojadinovic, R. Vasilic, J. Radic-Peric, M. Peric, Characterization of plasma electrolytic oxidation of magnesium alloy AZ31 in alkaline solution containing fluoride / Surf. Coat. Tech. 273 (2015) 1–11.
DOI: 10.1016/j.surfcoat.2015.03.032
Google Scholar
[8]
S.L. Sinebryukhov, M.V. Sidorova, V.S. Egorkin, P.M. Nedozorov, A. Yu. Ustinov, E.F. Volkova, S.V. Gnedenkov, Protective oxide coatings on Mg–Mn–Ce, Mg–Zn–Zr, Mg–Al–Zn–Mn, Mg–Zn–Zr–Y, and Mg–Zr–Nd magnesium-based alloys / Prot. Met. Phys. Chem. Surf. 48 (2012).
DOI: 10.1134/s2070205112060147
Google Scholar
[9]
M. Mohedano, E. Matykina, R. Arrabal, B. Mingo, A. Pardo. PEO of pre-anodized Al-Si alloys: Corrosion properties and influence of sealings / Appl. Surf. Sci. 346 (2015) 57–67.
DOI: 10.1016/j.apsusc.2015.03.206
Google Scholar
[10]
N.P. Wasekar, A. Jyothirmayi, G. Sundararajan, Influence of prior corrosion on the high cycle fatigue behavior of microarc oxidation coated 6061-T6 Aluminum alloy / Int. J. Fatigue. 33 (2011) 1268–1276.
DOI: 10.1016/j.ijfatigue.2011.03.016
Google Scholar
[11]
L.B. Boinovich, S.V. Gnedenkov, D.A. Alpysbaeva, V.S. Egorkin, A.M. Emelyanenko, S.L. Sinebryukhov, A.K. Zaretskaya, Anticorrosion performance of composite coatings on low-carbon steel containing highly- and superhydrophobic layers in combination with oxide sublayers / Corros. Sci. 55 (2012).
DOI: 10.1016/j.corsci.2011.10.023
Google Scholar
[12]
V. Malinovschi, A. Marin, S. Moga, D. Negrea, Preparation and characterization of anticorrosive layers deposited by micro-arc oxidation on low carbon steel / Surf. Coat. Tech. 253 (2014) 194–198.
DOI: 10.1016/j.surfcoat.2014.05.036
Google Scholar
[13]
S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, D.V. Mashtalyar, A.M. Emelyanenko, L.B. Boinovich, Electrochemical properties of the superhydrophobic coatings on metals and alloys / J. Taiwan Inst. Chem. E. 85 (2014) 3075–3080.
DOI: 10.1016/j.jtice.2014.08.025
Google Scholar
[14]
S.V. Gnedenkov, V.S. Egorkin, S.L. Sinebryukhov, I.E. Vyaliy, A.S. Pashinin, A.M. Emelyanenko, L.B. Boinovich, Formation and electrochemical properties of the superhydrophobic nanocomposite coating on Mg–Mn–Ce magnesium alloy / Surf. Coat. Tech. 232 (2013).
DOI: 10.1016/j.surfcoat.2013.05.020
Google Scholar
[15]
Q. Liu, D.X. Chen, Z.X. Kang, One-Step Electrodeposition Process To Fabricate Corrosion-Resistant Superhydrophobic Surface on Magnesium Alloy / ACS Appl. Mater. Interfaces 7 (2015) 1859–1867.
DOI: 10.1021/am507586u
Google Scholar
[16]
S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, I.E. Vyaliy, A.M. Emelyanenko, L.B. Boinovich, Protective properties of the nanocomposite coatings on Mg alloy / Solid State Phenom. 213 (2014) 176–179.
DOI: 10.4028/www.scientific.net/ssp.213.176
Google Scholar
[17]
Q. Liu, Z.X. Kang, One-Step One-step electrodeposition process to fabricate superhydrophobic surface with improved anticorrosion property on magnesium alloy / Materials Letters 137 (2014) 210–213.
DOI: 10.1016/j.matlet.2014.09.010
Google Scholar
[18]
S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, D.V. Mashtalyar, A.M. Emel'yanenko, D.A. Alpysbaeva, L.B. Boinovich, Features of the Occurrence of Electrochemical Processes in Contact of Sodium Chloride Solutions with the Surface of Superhydrophobic Coatings on Titanium / Russ. J. Electrochem+. 48 (2012).
DOI: 10.1134/s1023193512020048
Google Scholar
[19]
J.S. Liang, D. Li, D.Z. Wang, K.Y. Liu, L. Chen, Preparation of stable superhydrophobic film on stainless steel substrate by a combined approach using electrodeposition and fluorinated modification / Appl. Surf. Sci. 293 (2014) 265–270.
DOI: 10.1016/j.apsusc.2013.12.147
Google Scholar
[20]
P. Wang, D. Zhang, R. Qiu, Y. Wan, J.J. Wu, Green approach to fabrication of a super-hydrophobic film on copper and the consequent corrosion resistance / Corros. Sci. 80 (2014) 366–373.
DOI: 10.1016/j.corsci.2013.11.055
Google Scholar
[21]
J.L. Song, W.J. Xu, X. Liu, Y. Lu, Z.F. Wei, L.B. Wu, Ultrafast fabrication of rough structures required by superhydrophobic surfaces on Al substrates using an immersion method / Chem. Eng. J. 211/212 (2012) 143–152.
DOI: 10.1016/j.cej.2012.09.094
Google Scholar