Evaluation of Electrochemical Properties of the PEO-Coatings Treated with Hydrophobic Agent Solution on Aluminium Alloy

Article Preview

Abstract:

The developed methods of formation and results of the study of the hydrophobic layers on aluminum alloy, previously subjected to plasma electrolytic oxidation (PEO) and additional treatment (either in ethanol solution or under UV-radiation in the presence of ozone plasma) with subsequent deposition of the hydrophobic agent (methoxy-{3-[(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluoroctyl) oxy] propyl}-silane solution in decane) have been described. It was found, that the formed composite layers possess a hydrophobicity (contact angle higher 157o) and high anticorrosion properties (the impedance modulus, |Z|f = 0.01 Hz, ranges from 9.2·109 to 4.0·1010 Оhm·cm2 depending on the treatment procedure).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 245)

Pages:

116-120

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Snizhko, A. Yerokhin, N. Gurevina, D. Misnyankin, A. Ciba, A. Matthews, Voltastatic studies of magnesium anodising in alkaline solutions, Surf. Coat. Technol. 205 (2010) 1527-1531.

DOI: 10.1016/j.surfcoat.2010.10.013

Google Scholar

[2] S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, S.L. Sinebryukhov, V.S. Egorkin et al, PEO coatings obtained on an Mg–Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes, Surf. Coat. Technol. 204 (2010) 2316-2322.

DOI: 10.1016/j.surfcoat.2009.12.024

Google Scholar

[3] V.S. Rudnev, T.P. Yarovaya, P.M. Nedozorov, A. Yu. Ustinov, L.M. Tyrina, I.V. Malyshev, V.G. Kuryavyi, V.S. Egorkin, S.L. Sinebryukhov, S.V. Gnedenkov, Obtaining ZrO2 + CeOx + TiO2/Ti compositions by plasma electrolytic oxidation of titanium and investigating their properties / Prot. Met. Phys. Chem. Surf. 47 (2011).

DOI: 10.1134/s2070205111050145

Google Scholar

[4] V.S. Rudnev, T.P. Yarovaya, V.S. Egorkin, S.L. Sinebryukhov, S.V. Gnedenkov, Properties of coatings formed on titanium by plasma electrolytic oxidation in a phosphate-borate electrolyte / Russ. J. Appl. Chem. 83 (2010) 664–670.

DOI: 10.1134/s1070427210040178

Google Scholar

[5] S.V. Gnedenkov, S.L. Sinebryukhov, A.V. Puz, A.S. Gnedenkov, I.E. Vyaliy, D.V. Mashtalyar, V.S. Egorkin, Plasma electrolytic oxidation coatings formed with microsecond current pulses / Solid State Phenom. 213 (2014) 149–153.

DOI: 10.4028/www.scientific.net/ssp.213.149

Google Scholar

[6] Y. Gao, A. Yerokhin, A. Matthews, DC plasma electrolytic oxidation of biodegradable cp-Mg: In-vitro corrosion studies / Surf. Coat. Tech. 234 (2013) 132–142.

DOI: 10.1016/j.surfcoat.2012.11.035

Google Scholar

[7] S. Stojadinovic, R. Vasilic, J. Radic-Peric, M. Peric, Characterization of plasma electrolytic oxidation of magnesium alloy AZ31 in alkaline solution containing fluoride / Surf. Coat. Tech. 273 (2015) 1–11.

DOI: 10.1016/j.surfcoat.2015.03.032

Google Scholar

[8] S.L. Sinebryukhov, M.V. Sidorova, V.S. Egorkin, P.M. Nedozorov, A. Yu. Ustinov, E.F. Volkova, S.V. Gnedenkov, Protective oxide coatings on Mg–Mn–Ce, Mg–Zn–Zr, Mg–Al–Zn–Mn, Mg–Zn–Zr–Y, and Mg–Zr–Nd magnesium-based alloys / Prot. Met. Phys. Chem. Surf. 48 (2012).

DOI: 10.1134/s2070205112060147

Google Scholar

[9] M. Mohedano, E. Matykina, R. Arrabal, B. Mingo, A. Pardo. PEO of pre-anodized Al-Si alloys: Corrosion properties and influence of sealings / Appl. Surf. Sci. 346 (2015) 57–67.

DOI: 10.1016/j.apsusc.2015.03.206

Google Scholar

[10] N.P. Wasekar, A. Jyothirmayi, G. Sundararajan, Influence of prior corrosion on the high cycle fatigue behavior of microarc oxidation coated 6061-T6 Aluminum alloy / Int. J. Fatigue. 33 (2011) 1268–1276.

DOI: 10.1016/j.ijfatigue.2011.03.016

Google Scholar

[11] L.B. Boinovich, S.V. Gnedenkov, D.A. Alpysbaeva, V.S. Egorkin, A.M. Emelyanenko, S.L. Sinebryukhov, A.K. Zaretskaya, Anticorrosion performance of composite coatings on low-carbon steel containing highly- and superhydrophobic layers in combination with oxide sublayers / Corros. Sci. 55 (2012).

DOI: 10.1016/j.corsci.2011.10.023

Google Scholar

[12] V. Malinovschi, A. Marin, S. Moga, D. Negrea, Preparation and characterization of anticorrosive layers deposited by micro-arc oxidation on low carbon steel / Surf. Coat. Tech. 253 (2014) 194–198.

DOI: 10.1016/j.surfcoat.2014.05.036

Google Scholar

[13] S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, D.V. Mashtalyar, A.M. Emelyanenko, L.B. Boinovich, Electrochemical properties of the superhydrophobic coatings on metals and alloys / J. Taiwan Inst. Chem. E. 85 (2014) 3075–3080.

DOI: 10.1016/j.jtice.2014.08.025

Google Scholar

[14] S.V. Gnedenkov, V.S. Egorkin, S.L. Sinebryukhov, I.E. Vyaliy, A.S. Pashinin, A.M. Emelyanenko, L.B. Boinovich, Formation and electrochemical properties of the superhydrophobic nanocomposite coating on Mg–Mn–Ce magnesium alloy / Surf. Coat. Tech. 232 (2013).

DOI: 10.1016/j.surfcoat.2013.05.020

Google Scholar

[15] Q. Liu, D.X. Chen, Z.X. Kang, One-Step Electrodeposition Process To Fabricate Corrosion-Resistant Superhydrophobic Surface on Magnesium Alloy / ACS Appl. Mater. Interfaces 7 (2015) 1859–1867.

DOI: 10.1021/am507586u

Google Scholar

[16] S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, I.E. Vyaliy, A.M. Emelyanenko, L.B. Boinovich, Protective properties of the nanocomposite coatings on Mg alloy / Solid State Phenom. 213 (2014) 176–179.

DOI: 10.4028/www.scientific.net/ssp.213.176

Google Scholar

[17] Q. Liu, Z.X. Kang, One-Step One-step electrodeposition process to fabricate superhydrophobic surface with improved anticorrosion property on magnesium alloy / Materials Letters 137 (2014) 210–213.

DOI: 10.1016/j.matlet.2014.09.010

Google Scholar

[18] S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, D.V. Mashtalyar, A.M. Emel'yanenko, D.A. Alpysbaeva, L.B. Boinovich, Features of the Occurrence of Electrochemical Processes in Contact of Sodium Chloride Solutions with the Surface of Superhydrophobic Coatings on Titanium / Russ. J. Electrochem+. 48 (2012).

DOI: 10.1134/s1023193512020048

Google Scholar

[19] J.S. Liang, D. Li, D.Z. Wang, K.Y. Liu, L. Chen, Preparation of stable superhydrophobic film on stainless steel substrate by a combined approach using electrodeposition and fluorinated modification / Appl. Surf. Sci. 293 (2014) 265–270.

DOI: 10.1016/j.apsusc.2013.12.147

Google Scholar

[20] P. Wang, D. Zhang, R. Qiu, Y. Wan, J.J. Wu, Green approach to fabrication of a super-hydrophobic film on copper and the consequent corrosion resistance / Corros. Sci. 80 (2014) 366–373.

DOI: 10.1016/j.corsci.2013.11.055

Google Scholar

[21] J.L. Song, W.J. Xu, X. Liu, Y. Lu, Z.F. Wei, L.B. Wu, Ultrafast fabrication of rough structures required by superhydrophobic surfaces on Al substrates using an immersion method / Chem. Eng. J. 211/212 (2012) 143–152.

DOI: 10.1016/j.cej.2012.09.094

Google Scholar