Electrochemical and Mechanical Properties of the PVDF/PEO-Coatings on Magnesium Alloy

Article Preview

Abstract:

The paper presents the results of the study of electrochemical and mechanical properties of PVDF/PEO-coatings formed on magnesium alloy MA8 by plasma electrolytic oxidation (PEO) and subsequent application of polyvinylidene fluoride (PVDF) on the PEO-layer. The oxide coatings were formed using a 300 Hz bipolar signal with duty cycle (D) 0.50. The analysis of electrochemical data has showed a decrease of corrosion currents by 3 orders of magnitude (down to 6.0·10-9 А·сm-2) and an increase of the polarization resistance by 3 orders of magnitude (up to 5.3·106 Оhm·сm2) for the coatings formed by triple dipping (x3) of the PEO-layers into PVDF solution. Evaluation of the tribological properties of the (x3) PVDF/PEO-coatings has showed a significant increase of the wear resistance (the number of abrasion cycles resulting in complete destruction of the coating increased in 25 times) as compared to the base PEO-layer.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 245)

Pages:

130-136

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.O. Hussein, X. Nie, D.O. Northwood, An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing / Electrochim. Acta 112 (2013) 111–119.

DOI: 10.1016/j.electacta.2013.08.137

Google Scholar

[2] 3] S.L. Sinebryukhov, M.V. Sidorova, V.S. Egorkin, P.M. Nedozorov, A. Yu. Ustinov, E.F. Volkova, S.V. Gnedenkov, Protective oxide coatings on Mg–Mn–Ce, Mg–Zn–Zr, Mg–Al–Zn–Mn, Mg–Zn–Zr–Y, and Mg–Zr–Nd magnesium-based alloys / Prot. Met. Phys. Chem. Surf. 48 (2012).

DOI: 10.1134/s2070205112060147

Google Scholar

[3] S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, S.L. Sinebryukhov, V.S. Egorkin, M.V. Nistratova, A. Yerokhin, A. Matthews, PEO coatings obtained on an Mg-Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes / Surf. Coat. Technol. 204 (2010).

DOI: 10.1016/j.surfcoat.2009.12.024

Google Scholar

[4] K. Du, X. Guo, Q. Guo, F. Wang, Y. Tian, A monolayer PEO coating on 2024 Al alloy by transient self-feedback control mode / Mater. Lett. 91 (2013) 45–49.

DOI: 10.1016/j.matlet.2012.09.055

Google Scholar

[5] E. Matykina, R. Arrabal, A. Pardo, M. Mohedano, B. Mingo, I. Rodríguez, J. González, Energy-efficient PEO process of aluminium alloys / Mater. Lett. 127 (2014) 13–16.

DOI: 10.1016/j.matlet.2014.04.077

Google Scholar

[6] Y. Guan, Y. Xia, G. Li, Growth mechanism and corrosion behavior of ceramic coatings on aluminum produced by autocontrol AC pulse PEO / Surf. Coat. Tech. 202 (2008) 4602–4612.

DOI: 10.1016/j.surfcoat.2008.03.031

Google Scholar

[7] V.S. Rudnev, T.P. Yarovaya, P.M. Nedozorov, A. Yu. Ustinov, L.M. Tyrina, I.V. Malyshev, V.G. Kuryavyi, V.S. Egorkin, S.L. Sinebryukhov, S.V. Gnedenkov, Obtaining ZrO2 + CeOx + TiO2/Ti compositions by plasma electrolytic oxidation of titanium and investigating their properties /Prot. Met. Phys. Chem. Surf. 47 (2011).

DOI: 10.1134/s2070205111050145

Google Scholar

[8] V.S. Rudnev, T.P. Yarovaya, V.S. Egorkin, S.L. Sinebryukhov, S.V. Gnedenkov, Properties of coatings formed on titanium by plasma electrolytic oxidation in a phosphate-borate electrolyte / Russ. J. Appl. Chem. 83 (2010) 664–670.

DOI: 10.1134/s1070427210040178

Google Scholar

[9] S.V. Gnedenkov, S.L. Sinebryukhov, A.V. Puz, A.S. Gnedenkov, I.E. Vyaliy, D.V. Mashtalyar, V.S. Egorkin, Plasma electrolytic oxidation coatings formed with microsecond current pulses / Solid State Phenom. 213 (2014) 149–153.

DOI: 10.4028/www.scientific.net/ssp.213.149

Google Scholar

[10] L.B. Boinovich, S.V. Gnedenkov, D.A. Alpysbaeva, V.S. Egorkin, A.M. Emelyanenko, S.L. Sinebryukhov, A.K. Zaretskaya, Anticorrosion performance of composite coatings on low-carbon steel containing highly- and superhydrophobic layers in combination with oxide sublayers / Corros. Sci. 55 (2012).

DOI: 10.1016/j.corsci.2011.10.023

Google Scholar

[11] Y.L. Wang, M. Wang, M. Zhou, Z.H. Jiang, Characterization of graphite containing ceramic coating prepared on carbon steel by plasma electrolytic oxidation / Appl. Mech. Mater. 271/272 (2012) 46–49.

DOI: 10.4028/www.scientific.net/amm.271-272.46

Google Scholar

[12] P.M. Barkhudarov, P.B. Shah, E.B. Watkins, D.A. Doshi, C.J. Brinker, J. Majewski, Corrosion inhibition using superhydrophobic films / Corros. Sci. 50 (2008) 897–902.

DOI: 10.1016/j.corsci.2007.10.005

Google Scholar

[13] Q.Q. Shang, M.Y. Wang, H. Liu, L.J. Gao, G.M. Xiao, Facile fabrication of water repellent coatings from vinyl functionalized SiO2 spheres / J. Coating. Tech. Res. 10 (2013) 465–473.

DOI: 10.1007/s11998-012-9465-z

Google Scholar

[14] J.F. Ou, W.H. Hu, M.S. Xue, F.J. Wang, W. Li, Superhydrophobic surfaces on light alloy substrates fabricated by a versatile process and their corrosion protection / ACS Appl. Mater. Interfaces 5 (2013) 3101–3107.

DOI: 10.1021/am4000134

Google Scholar

[15] S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, D.V. Mashtalyar, A.M. Emelyanenko, L.B. Boinovich, Electrochemical properties of the superhydrophobic coatings on metals and alloys / J. Taiwan Inst. Chem. E. 85 (2014) 3075–3080.

DOI: 10.1016/j.jtice.2014.08.025

Google Scholar

[16] J.C. Tuberquia, N. Nizamidin, R.R. Harl, J. Albert, J. Hunter, B.R. Rogers, G. K, Jennings, Surface-initiated polymerization of superhydrophobic polymethylene / J. Am. Chem. Soc. 132 (2010) 5725–5734.

DOI: 10.1021/ja9086193

Google Scholar

[17] S.R. Yu, J.A. Liu, W. Diao, W. Li, Preparation of a bionic microtexture on X52 pipeline steels and its superhydrophobic behavior / J. Alloys Compounds 585 (2014) 689–695.

DOI: 10.1016/j.jallcom.2013.09.042

Google Scholar

[18] D.Y. Yu, J.T. Tian, J.H. Dai, X. Wang, Corrosion resistance of three-layer superhydrophobic composite coating on carbon steel in seawater / Electrochim. Acta 97 (2013) 409–419.

DOI: 10.1016/j.electacta.2013.03.071

Google Scholar

[19] C.L. Zhou, X. Lu, Z. Xin, J. Liu, Corrosion resistance of novel silane-functional polybenzoxazine coating on steel / Corros. Sci. 70 (2013) 145–151.

DOI: 10.1016/j.corsci.2013.01.023

Google Scholar

[20] S.V. Gnedenkov, V.S. Egorkin, S.L. Sinebryukhov, I.E. Vyaliy, A.S. Pashinin, A.M. Emelyanenko, L.B. Boinovich, Formation and electrochemical properties of the superhydrophobic nanocomposite coating on Mg–Mn–Ce magnesium alloy / Surf. Coat. Tech. 232 (2013).

DOI: 10.1016/j.surfcoat.2013.05.020

Google Scholar

[21] T. Ishizaki, J. Hieda, N. Saito, N. Saito, O. Takai, Corrosion resistance and chemical stability of super-hydrophobic film deposited on magnesium alloy AZ31 by microwave plasma-enhanced chemical vapor deposition / Electrochim. Acta 55 (2010).

DOI: 10.1016/j.electacta.2010.06.064

Google Scholar

[22] Z.X. She, Q. Li, Z.W. Wang, L.Q. Li, F.A. Chen, J.C. Zhou, Researching the fabrication of anticorrosion superhydrophobic surface on magnesium alloy and its mechanical stability and durability / Chem. Eng. J. 228 (2013) 415–424.

DOI: 10.1016/j.cej.2013.05.017

Google Scholar

[23] J.L. Song, Y. Lu, S. Huang, X. Liu, L.B. Wu, W.J. Xu, A simple immersion approach for fabricating superhydrophobic Mg alloy surfaces / Appl. Surf. Sci. 266 (2013) 445–450.

DOI: 10.1016/j.apsusc.2012.12.063

Google Scholar

[24] S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, I.E. Vyaliy, A.M. Emelyanenko, L.B. Boinovich, Protective properties of the nanocomposite coatings on Mg alloy / Solid State Phenom. 213 (2014) 176–179.

DOI: 10.4028/www.scientific.net/ssp.213.176

Google Scholar

[25] J.L. Song, W.J. Xu, X. Liu, Y. Lu, Z.F. Wei, L.B. Wu, Ultrafast fabrication of rough structures required by superhydrophobic surfaces on Al substrates using an immersion method / Chem. Eng. J. 211/212 (2012) 143–152.

DOI: 10.1016/j.cej.2012.09.094

Google Scholar

[26] S.V. Gnedenkov, S.L. Sinebryukhov, V.S. Egorkin, D.V. Mashtalyar, A.M. Emel'yanenko, D.A. Alpysbaeva, L.B. Boinovich, Features of the Occurrence of Electrochemical Processes in Contact of Sodium Chloride Solutions with the Surface of Superhydrophobic Coatings on Titanium / Russ. J. Electrochem+. 48 (2012).

DOI: 10.1134/s1023193512020048

Google Scholar

[27] Fu Liu, N. Awanis Hashim, Yutie Liu, M.R. Moghareh Abed, K. Li, Progress in the production and modification of PVDF membranes, Journal of Membrane Science. 375 (2011) 1-27.

DOI: 10.1016/j.memsci.2012.05.024

Google Scholar

[28] Gnedenkov S.V., Sinebryukhov S.L., Mashtalyar D.V., Egorkin V.S., Sidorova M.V., Gnedenkov A.S. Composite polymer-containing protective coatings on magnesium alloy MA8, Corrosion Science. 85 (2014) 52–59.

DOI: 10.1016/j.corsci.2014.03.035

Google Scholar