Effect of Al(OH)3 in Enhancing PbSnF4 Anode Performances for Rechargeable Lithium-Ion Battery

Article Preview

Abstract:

Two-phase Al(OH)3–PbSnF4 composites (concentrations of aluminum hydroxide are equal to 5 wt.%, 15 wt.% and 30 wt.%) has been prepared by high-energy ball-milling method. The materials were employed as anodes in Li-ion batteries. It was established that PbSnF4-based systems yield high initial capacity of 800–1100 mAh g–1. The reversible specific capacity of Al(OH)3–PbSnF4 (aluminum hydroxide – 15 wt.%) after 10-fold charge–discharge cycling in the range of 2.5–0.005 V attains 120 mAh g–1, while the specific capacity of pure PbSnF4 is equal only to 20 mAh g–1. It has been shown that the deviation from 15 wt.% concentration of Al (OH)3 decreases cycling stability of lead fluorostannate (II).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 245)

Pages:

153-158

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.B. Kunshina, V.I. Ivanenko, O.G. Gromov, E.P. Lokshin, Production of an electrode material modified by a lithium-conducting solid electrolyte, Russ. J. Inorg. Chem. 59 (2014) 1415–1419.

DOI: 10.1134/s003602361410009x

Google Scholar

[2] U.K. Sen, S. Mitra, Improved electrode fabrication method to enhance performance and stability of MoS2-based lithium-ion battery anode, J. Solid State Electrochem. 18 (2014) 2701–2708.

DOI: 10.1007/s10008-014-2518-8

Google Scholar

[3] E.V. Saenko, G.V. Leont'eva, V.V. Vol'khin, A.S. Kolyshkin, Variation of the composition and properties of lithium manganese oxide spinel in lithiation-delithiation cycles, Russ. J. Inorg. Chem. 52 (2007) 1312–1316.

DOI: 10.1134/s0036023607080256

Google Scholar

[4] V.G. Kuryavyi, A. Yu. Ustinov, D.P. Opra, G.A. Zverev, T.A. Kaidalova, Composite containing nanosized titanium oxide and oxyfluoride and carbon synthesized in plasma of pulse high-voltage discharge, Mater. Lett. 137 (2014) 398–400.

DOI: 10.1016/j.matlet.2014.09.007

Google Scholar

[5] B. Ebin, G. Lindbergh, S. Gurmen, Preparation and electrochemical properties of nanocrystalline LiBxMn2−xO4 cathode particles for Li-ion batteries by ultrasonic spray pyrolysis method, J. Alloy. Compd. 620 (2015) 399–406.

DOI: 10.1016/j.jallcom.2014.09.098

Google Scholar

[6] T.L. Kulova, A.M. Skundin, Electrode materials for lithium-ion batteries of new generation, Russ. J. Electrochem. 48 (2012) 362–368.

DOI: 10.1134/s1023193512020085

Google Scholar

[7] S.V. Gnedenkov, D.P. Opra, S.L. Sinebryukhov, V.G. Kuryavyi, А. Yu. Ustinov, V.I. Sergienko, Structural and electrochemical investigation of nanostructured C: TiO2–TiOF2 composite synthesized in plasma by an original method of pulsed high-voltage discharge, J. Alloy. Compd. 621 (2015).

DOI: 10.1016/j.jallcom.2014.10.023

Google Scholar

[8] S.V. Makaev, V.K. Ivanov, O.S. Polezhaeva, Yu.D. Tret'yakov, T.L. Kulova, A.M. Skundin, O.A. Brylev, Electrochemical intercalation of lithium into nanocrystalline ceria, Russ. J. Inorg. Chem. 55 (2010) 991–994.

DOI: 10.1134/s0036023610070016

Google Scholar

[9] U.K. Sen, S. Mitra, Synthesis of Molybdenum Oxides and their Electrochemical Properties against Li, Energ. Procedia. 54 (2014) 740–747.

DOI: 10.1016/j.egypro.2014.07.315

Google Scholar

[10] P.K. Dutta, U.K. Sen, S. Mitra, Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode, RSC Adv. 4 (2014) 43155–43159.

DOI: 10.1039/c4ra05851h

Google Scholar

[11] T.L. Kulova, New electrode materials for lithium-ion batteries (Review), Russ. J. Electrochem. 49 (2013) 1–25.

DOI: 10.1134/s1023193513010102

Google Scholar

[12] T. Xiao, Y. Tang, Z. Jia, S. Feng, Synthesis of SnO2/Mg2SnO4 nanoparticles and their electrochemical performance for use in Li-ion battery electrodes, Electrochim. Acta. 54 (2009) 2396–2401.

DOI: 10.1016/j.electacta.2008.10.061

Google Scholar

[13] A.M. Skundin, O.N. Efimov, O.V. Yarmolenko, The state-of-the-art and prospects for the development of rechargeable lithium batteries, Russ. Chem. Rev. 71 (2002) 329–346.

DOI: 10.1070/rc2002v071n04abeh000706

Google Scholar

[14] D. -A. Zhang, Q. Wang, Q. Wang, J. Sun, L. -L. Xing, X. -Y. Xue, Core–shell SnO2/TiO2–B nanowires as the anode of lithium ion battery with high capacity and ratecapability, Mater. Lett. 128 (2014) 295–298.

DOI: 10.1016/j.matlet.2014.04.160

Google Scholar

[15] A. Hayashi, T. Konishi, K. Tadanaga, T. Minami, M. Tatsumisago, Preparation and characterization of SnO–P2O5 glasses as anode materials for lithium secondary batteries, J. Non-Cryst. Solids. 345–346 (2004) 478–483.

DOI: 10.1016/j.jnoncrysol.2004.08.069

Google Scholar

[16] R. Liu, D. Li, D. Tian, G. Xia, C. Wang, N. Xiao, N. Li, N.H. Mack, Q. Li, G. Wu, Promotional role of B2O3 in enhancing hollow SnO2 anode performance for Li-ion batteries, J. Power Sources. 251 (2014) 279–286.

DOI: 10.1016/j.jpowsour.2013.11.068

Google Scholar

[17] P. Lian, J. Wang, D. Cai, L. Ding, Q. Jia, H. Wang, Promotional role of B2O3 in enhancing hollow SnO2 anode performance for Li-ion batteries, Electrochim. Acta. 116 (2014) 103–110.

DOI: 10.1016/j.electacta.2013.11.007

Google Scholar

[18] J. -H. Ahn, G.X. Wang, J. Yao, H.K. Liu, S.X. Dou, Battery dimensional changes occurring during charge/discharge cycles – thin rectangular lithium ion and polymer cells, J. Power Sources. 119–121 (2003) 45–49.

DOI: 10.1016/s0378-7753(03)00281-7

Google Scholar

[19] A.B. Podgorbunsky, S.L. Sinebryukhov, S.V. Gnedenkov, Comparison of superionic phases for some fluorine conducting materials, Phys. Procedia. 23 (2012) 94–97.

DOI: 10.1016/j.phpro.2012.01.024

Google Scholar

[20] L.N. Patro, K. Hariharan, Fast fluoride ion conducting materials in solid state ionics: An overview, Solid State Ionics. 239 (2013) 41–49.

DOI: 10.1016/j.ssi.2013.03.009

Google Scholar

[21] V. Ya. Kavun, A.I. Ryabov, I.A. Telin, A.B. Podgorbunskiy, S.L. Sinebrukhov, S.V. Gnedekov, V.K. Goncharuk, Ionic mobility and conductivity in PbSnF4 doped alkali metal fluoride – obtained by NMR and Impedance spectroscopy, J. Struct. Chem. 53 (2012).

DOI: 10.1134/s0022476612020126

Google Scholar

[22] L.L.G. Tovar, P.A. Connor, F. Belliard, L.M. Torres-Martinez, J.T.S. Irvine, Investigation of lead tin fluorides as possible negative electrodes for Li-ion batteries, J. Power Sources. 97–98 (2001) 258–261.

DOI: 10.1016/s0378-7753(01)00533-x

Google Scholar

[23] T.L. Kulova, A.M. Skundin, Yu.E. Rogynskaya, F. Kh. Chibirova, Degradation mechanism of mixed nanostructured tin and titanium oxides when cycled, Russ. J. Electrochem. 42 (2006) 1019–1030.

DOI: 10.1134/s1023193506090011

Google Scholar

[24] M. Martos, J. Morales, L. Sanchez, Lead-based systems as suitable anode materials for Li-ion batteries, Electrochim. Acta. 48 (2003) 615–621.

DOI: 10.1016/s0013-4686(02)00730-2

Google Scholar

[25] O.N. Gavrilenko, E.V. Pashkova, A.G. Belous, Effect of synthesis methods on the morphology of nanosized tin dioxide particles, Russ. J. Inorg. Chem. 52 (2007) 1835–1839.

DOI: 10.1134/s0036023607120054

Google Scholar

[26] T.L. Kulova, A.M. Skundin, Yu.E. Rogynskaya, F. Kh. Chibirova, Lithium intercalation into nanostructured films based on oxides of tin and titanium, Russ. J. Electrochem. 40 (2004) 432–439.

DOI: 10.1023/b:ruel.0000023936.13222.6f

Google Scholar

[27] T.L. Kulova, Yu.E. Rogynskaya, A.M. Skundin, Nanostructured material based on tin and titanium oxides: A potentiodynamic study, Russ. J. Electrochem. 41 (2005) 69–74.

DOI: 10.1007/s11175-005-0054-7

Google Scholar

[28] W. -S. Chang, C. -M. Park, H. -J. Sohn, Electrochemical performance of pyrolyzed polyacrylonitrile (PAN) based Sn/C composite anode for Li-ion batteries, J. Electroanal. Chem. 671 (2012) 67–72.

DOI: 10.1016/j.jelechem.2012.02.024

Google Scholar

[29] S.V. Gnedenkov, D.P. Opra, S.L. Sinebryukhov, A.K. Tsvetnikov, A.Y. Ustinov, V.I. Sergienko, Hydrolysis lignin-based organic electrode material for primary lithium batteries, J. Solid State Electrochem. 17 (2013) 2611–2621.

DOI: 10.1007/s10008-013-2136-x

Google Scholar

[30] C. Nithya, T. Sowmiya, K.V. Baskar, N. Selvaganeshan, T. Kalaiyarasi, S. Gopukumar, High capacity SnxSbyCuz composite anodes for lithium ion batteries, Solid State Sci. 19 (2013) 144–149.

DOI: 10.1016/j.solidstatesciences.2013.02.020

Google Scholar