Effect of Aliovalent Dopants on the Electrophysical Properties of Mechanochemically Sythesized KSn2F5

Article Preview

Abstract:

Investigated systems including solid solutions K(1–x)LixSn2F5 (0 ≤ x ≤ 7.5) and 0.95KSn2F5–0.05Al2O3 synthesized through high-energy ball milling and characterized by XRD and DSC techniques. The values of the dc conductivity and activation energies estimated in the temperature range from 298 K to 473 K by impedance spectroscopy. It was established that conductivity at ambient temperature increases for K0.975Li0.025Sn2F5 and K0.95Li0.05Sn2F5 samples as compared to pure KSn2F5. The role of cation substitution influencing on conductivity values, phase transitions and activation energies in the given systems discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 245)

Pages:

166-171

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy. Theory, Experiment, and Applications. Hoboken. A John Wiley & Sons, 2005. 590.

DOI: 10.1002/jrs.1558

Google Scholar

[2] A.K. Ivanov-Schitz, I.V. Murin, Solid State Ionics, vol. 2, SPb University press, 2010 [in russian].

Google Scholar

[3] M. -C. Lin, M. G., B. Lu, Y. Wu, D. -Y. Wang, M. G., M. Angell, C. Chen, J. Yang, B. -J. Hwang, H. Dai, An ultrafast rechargeable aluminium-ion battery, Nature. 520 (2015) 324–328.

DOI: 10.1038/nature14340

Google Scholar

[4] M.A. Reddy, M. Fichtner, Batteries based on fluoride shuttle, J. Mater. Chem. 21 (2011) 17059–17062.

DOI: 10.1039/c1jm13535j

Google Scholar

[5] Y. Bai, Y. Tanga, Z. Wang, Z. Jia, F. Wua, C. Wua, G. Liu, Electrochemical performance of Si/CeO2/Polyaniline composites as anode materials for lithium ion batteries, Solid state ionics. 272 (2015) 24–29.

DOI: 10.1016/j.ssi.2014.12.016

Google Scholar

[6] Y. Hasegawa, A. Nagasaka, K. Jae-Ho, S. Yonezawa, M. Takashima, Preparation of COF2 using CO2 and F2 in the electrochemical cell with PbSnF4 as a solid electrolyte, J. Fluorine Chem. 128 (2007) 958–964.

DOI: 10.1016/j.jfluchem.2007.04.016

Google Scholar

[7] L. Zhang, M. A. Reddy, M. Fichtner, Development of tysonite-type fluoride conducting thin film electrolytes for fluoride ion batteries, Solid state ionics. 272 (2015) 39–44.

DOI: 10.1016/j.ssi.2014.12.010

Google Scholar

[8] V. Ya. Kavun, A.I. Ryabov, I.A. Telin, A.B. Podgorbunskiy, S.L. Sinebrukhov, S.V. Gnedekov, V.K. Goncharuk, Ionic mobility and conductivity in PbSnF4 doped alkali metal fluoride – obtained by NMR and Impedance spectroscopy, J. Struct. Chem. 53 (2012).

DOI: 10.1134/s0022476612020126

Google Scholar

[9] C. Lucat, A. Rhandour, J.M. Reau, J. Portier, P. Hagenmuller, Fast ionic conduction of fluorides with the fluorite-type structure, J. Solid State Chem. 29 (1979).

DOI: 10.1016/0022-4596(79)90194-4

Google Scholar

[10] R. C. Agrawal, R. K. Gupta, Review Superionic solids: composite electrolyte phase – an overview, J. Mater. Sci. Lett. 34 (1999) 1131–1162.

Google Scholar

[11] A.B. Podgorbunsky, S.L. Sinebryukhov, S.V. Gnedenkov, High anionic conductivity of solids with different structure, Solid State Phenom. 213 (2014) 200.

DOI: 10.4028/www.scientific.net/ssp.213.200

Google Scholar

[12] L.N. Patro, K. Hariharan, Fast fluoride ion conducting materials in solid state ionics: An overview, Solid State Ionics. 239 (2013) 41–49.

DOI: 10.1016/j.ssi.2013.03.009

Google Scholar

[13] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J-M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature. 407 (2000) 496–499.

DOI: 10.1038/35035045

Google Scholar

[14] H. Li., P. Balaya, J. Maier, Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides, J. Electrochem. Soc. 151 (2004) A1878–A1885.

DOI: 10.1149/1.1801451

Google Scholar

[15] L.L.G. Tovar, P.A. Connor, F. Belliard, L.M. Torres-Martinez, J.T.S. Irvine, Investigation of lead tin fluorides as possible negative electrodes for Li-ion batteries, J. Power Sources. 97–98 (2001) 258–261.

DOI: 10.1016/s0378-7753(01)00533-x

Google Scholar

[16] G. Denes, G. Milova, M.C. Madamba, M. Perfiliev, Structure and ionic transport of PbSnF4 superionic conductor, Solid state ionics. 86–88 (1996) 77–82.

DOI: 10.1016/0167-2738(96)00094-x

Google Scholar

[17] K. Yamada, M.M. Ahmad, Y. Ogiso, T. Okuda, J. Chikami, G. Miehe, H. Ehrenberg, H. Fuess, Two dimensional fluoride ion conductor RbSn2F5 studied by impedance spectroscopy and 19F, 119Sn, and 87Rb NMR, Eur. Phys. J. B. 40 (2004) 167–176.

DOI: 10.1140/epjb/e2004-00255-1

Google Scholar

[18] M. M. Ahmad, K. Yamada, T. Okuda, Fluoride ion diffusion of superionic PbSnF4 studied by nuclear magnetic resonance and impedance spectroscopy, J. Phys.: Condens. Matter. 14 (2002) 7233–7244.

DOI: 10.1088/0953-8984/14/30/312

Google Scholar

[19] P. Berastegui, S. Hull, S.G. Eriksson, A high temperature superionic phase of CsSn2F5, J. Solid State Chem. 183 (2010) 373–378.

DOI: 10.1016/j.jssc.2009.11.020

Google Scholar

[20] K. Yamada, M.M. Ahmad, H. Ohkia, T. Okuda, H. Ehrenberg, H. Fuess, Structural phase transition of the two-dimensional fluoride ion conductor KSn2F5 studied by X-ray diffraction, Solid State Ionics. 167 (2004) 301.

DOI: 10.1016/j.ssi.2003.09.004

Google Scholar

[21] L.N. Patro, K. Hariharan, Ionic transport studies in Sn(1–x)KxF(2–x) type solid electrolytes, Mater. Res. Bull. 47 (2012) 2492–2497.

DOI: 10.1016/j.materresbull.2012.05.006

Google Scholar

[22] S. Vilminot, I R. Bachmann, H. Schulz, Structure and conductivity in KSn2F5, Solid state ionics. 9–10 (1983) 559–562.

DOI: 10.1016/0167-2738(83)90295-3

Google Scholar

[23] L. N. Patro, K. Hariharan, Frequency dependent conduction characteristics of mechanochemically synthesized NaSn2F5, Mater. Sci. Eng., B. 162 (2009) 173–178.

DOI: 10.1016/j.mseb.2009.04.003

Google Scholar

[24] L. N. Patro, K. Hariharan, Influence of dispersed alumina particles on the transport characteristics of mechanochemically synthesized NaSn2F5, Ionics. 19 (2013) 643.

DOI: 10.1007/s11581-012-0784-y

Google Scholar