[1]
E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy. Theory, Experiment, and Applications. Hoboken. A John Wiley & Sons, 2005. 590.
DOI: 10.1002/jrs.1558
Google Scholar
[2]
A.K. Ivanov-Schitz, I.V. Murin, Solid State Ionics, vol. 2, SPb University press, 2010 [in russian].
Google Scholar
[3]
M. -C. Lin, M. G., B. Lu, Y. Wu, D. -Y. Wang, M. G., M. Angell, C. Chen, J. Yang, B. -J. Hwang, H. Dai, An ultrafast rechargeable aluminium-ion battery, Nature. 520 (2015) 324–328.
DOI: 10.1038/nature14340
Google Scholar
[4]
M.A. Reddy, M. Fichtner, Batteries based on fluoride shuttle, J. Mater. Chem. 21 (2011) 17059–17062.
DOI: 10.1039/c1jm13535j
Google Scholar
[5]
Y. Bai, Y. Tanga, Z. Wang, Z. Jia, F. Wua, C. Wua, G. Liu, Electrochemical performance of Si/CeO2/Polyaniline composites as anode materials for lithium ion batteries, Solid state ionics. 272 (2015) 24–29.
DOI: 10.1016/j.ssi.2014.12.016
Google Scholar
[6]
Y. Hasegawa, A. Nagasaka, K. Jae-Ho, S. Yonezawa, M. Takashima, Preparation of COF2 using CO2 and F2 in the electrochemical cell with PbSnF4 as a solid electrolyte, J. Fluorine Chem. 128 (2007) 958–964.
DOI: 10.1016/j.jfluchem.2007.04.016
Google Scholar
[7]
L. Zhang, M. A. Reddy, M. Fichtner, Development of tysonite-type fluoride conducting thin film electrolytes for fluoride ion batteries, Solid state ionics. 272 (2015) 39–44.
DOI: 10.1016/j.ssi.2014.12.010
Google Scholar
[8]
V. Ya. Kavun, A.I. Ryabov, I.A. Telin, A.B. Podgorbunskiy, S.L. Sinebrukhov, S.V. Gnedekov, V.K. Goncharuk, Ionic mobility and conductivity in PbSnF4 doped alkali metal fluoride – obtained by NMR and Impedance spectroscopy, J. Struct. Chem. 53 (2012).
DOI: 10.1134/s0022476612020126
Google Scholar
[9]
C. Lucat, A. Rhandour, J.M. Reau, J. Portier, P. Hagenmuller, Fast ionic conduction of fluorides with the fluorite-type structure, J. Solid State Chem. 29 (1979).
DOI: 10.1016/0022-4596(79)90194-4
Google Scholar
[10]
R. C. Agrawal, R. K. Gupta, Review Superionic solids: composite electrolyte phase – an overview, J. Mater. Sci. Lett. 34 (1999) 1131–1162.
Google Scholar
[11]
A.B. Podgorbunsky, S.L. Sinebryukhov, S.V. Gnedenkov, High anionic conductivity of solids with different structure, Solid State Phenom. 213 (2014) 200.
DOI: 10.4028/www.scientific.net/ssp.213.200
Google Scholar
[12]
L.N. Patro, K. Hariharan, Fast fluoride ion conducting materials in solid state ionics: An overview, Solid State Ionics. 239 (2013) 41–49.
DOI: 10.1016/j.ssi.2013.03.009
Google Scholar
[13]
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J-M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature. 407 (2000) 496–499.
DOI: 10.1038/35035045
Google Scholar
[14]
H. Li., P. Balaya, J. Maier, Li-Storage via Heterogeneous Reaction in Selected Binary Metal Fluorides and Oxides, J. Electrochem. Soc. 151 (2004) A1878–A1885.
DOI: 10.1149/1.1801451
Google Scholar
[15]
L.L.G. Tovar, P.A. Connor, F. Belliard, L.M. Torres-Martinez, J.T.S. Irvine, Investigation of lead tin fluorides as possible negative electrodes for Li-ion batteries, J. Power Sources. 97–98 (2001) 258–261.
DOI: 10.1016/s0378-7753(01)00533-x
Google Scholar
[16]
G. Denes, G. Milova, M.C. Madamba, M. Perfiliev, Structure and ionic transport of PbSnF4 superionic conductor, Solid state ionics. 86–88 (1996) 77–82.
DOI: 10.1016/0167-2738(96)00094-x
Google Scholar
[17]
K. Yamada, M.M. Ahmad, Y. Ogiso, T. Okuda, J. Chikami, G. Miehe, H. Ehrenberg, H. Fuess, Two dimensional fluoride ion conductor RbSn2F5 studied by impedance spectroscopy and 19F, 119Sn, and 87Rb NMR, Eur. Phys. J. B. 40 (2004) 167–176.
DOI: 10.1140/epjb/e2004-00255-1
Google Scholar
[18]
M. M. Ahmad, K. Yamada, T. Okuda, Fluoride ion diffusion of superionic PbSnF4 studied by nuclear magnetic resonance and impedance spectroscopy, J. Phys.: Condens. Matter. 14 (2002) 7233–7244.
DOI: 10.1088/0953-8984/14/30/312
Google Scholar
[19]
P. Berastegui, S. Hull, S.G. Eriksson, A high temperature superionic phase of CsSn2F5, J. Solid State Chem. 183 (2010) 373–378.
DOI: 10.1016/j.jssc.2009.11.020
Google Scholar
[20]
K. Yamada, M.M. Ahmad, H. Ohkia, T. Okuda, H. Ehrenberg, H. Fuess, Structural phase transition of the two-dimensional fluoride ion conductor KSn2F5 studied by X-ray diffraction, Solid State Ionics. 167 (2004) 301.
DOI: 10.1016/j.ssi.2003.09.004
Google Scholar
[21]
L.N. Patro, K. Hariharan, Ionic transport studies in Sn(1–x)KxF(2–x) type solid electrolytes, Mater. Res. Bull. 47 (2012) 2492–2497.
DOI: 10.1016/j.materresbull.2012.05.006
Google Scholar
[22]
S. Vilminot, I R. Bachmann, H. Schulz, Structure and conductivity in KSn2F5, Solid state ionics. 9–10 (1983) 559–562.
DOI: 10.1016/0167-2738(83)90295-3
Google Scholar
[23]
L. N. Patro, K. Hariharan, Frequency dependent conduction characteristics of mechanochemically synthesized NaSn2F5, Mater. Sci. Eng., B. 162 (2009) 173–178.
DOI: 10.1016/j.mseb.2009.04.003
Google Scholar
[24]
L. N. Patro, K. Hariharan, Influence of dispersed alumina particles on the transport characteristics of mechanochemically synthesized NaSn2F5, Ionics. 19 (2013) 643.
DOI: 10.1007/s11581-012-0784-y
Google Scholar