Fabrication of Electrochemical Sensors Based on Nanostructured Titanium Dioxide Formed through Anodic Oxidation

Article Preview

Abstract:

The nanotubular titanium dioxide structures were prepared using anodic oxidation. The structural features of surface have been investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectroscopy (EDS) techniques. These nanotubular titanium dioxide structures can be used as a sensor in potentiometric indication components of different types of chemical reactions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 245)

Pages:

182-189

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.G. Solovyov, S.D. Khanin, Dimension effects in nanostructures based on regular porous matrices, Bulletin of Herzen State Pedagogical University of Russia. 8 (2004) 10.

Google Scholar

[2] O.V. Lozovaya, M.R. Tarasevich, V.A. Bogdanovskaya, I.V. Kasatkina, A.I. Shcherbakov, Electrochemical synthesis, studies and modification of TiO2 nanotubes, Prot. Met. Phys. Chem. 47 (2011) 48-53.

DOI: 10.1134/s2070205111010114

Google Scholar

[3] W.W. Zhao, Z.Y. Ma, D.Y. Yan, J.J. Xu, H.Y. Chen, In situ enzymatic ascorbic acid production as electron donor for CdS quantum dots equipped TiO2 nanotubes: a general and efficient approach for new photoelectrochemical immunoassay, Anal. Chem. 84 (2012).

DOI: 10.1021/ac3028799

Google Scholar

[4] H. Li, J. Li, Q. Xu, Zh. Yang, X. Hu, A derivative photoelectrochemical sensing platform for 4-nitrophenolate contained organophosphates pesticide based on carboxylated perylene sensitized nano-TiO2, Anal. Chim. Acta. 766 (2013) 47-52.

DOI: 10.1016/j.aca.2012.12.038

Google Scholar

[5] M.G. Kutsev, G.M. Kuz'micheva, L.N. Obolenskaya, E.V. Savinkina, Molecular interaction between dna molecules and nanoscale modifications of titanium dioxide with the structures of anatase and η-TiO, J. Phys. Chem. A. 86 (2012) 1822-1826.

DOI: 10.1134/s0036024412110179

Google Scholar

[6] J.M. Macak, A. Ghicov, R. Hahn, H. Tsuchiya, P. Schmukia, Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses, J. Mater. Res. 21 (2006) 2824 – 2828.

DOI: 10.1557/jmr.2006.0344

Google Scholar

[7] D. Gong, C.A. Grimes, O.K. Varghese, Titanium oxide nanotube arrays prepared by anodic oxidation, Mater. Res. Soc. 16 (2001) 3331-3334.

DOI: 10.1557/jmr.2001.0457

Google Scholar

[8] D.I. Petukhov, I.V. Kolesnik, A.A. Eliseev, A.B. Lukashin, Yu.D. Tretyakov, Synthesis and study of the properties of porous TiO2 films obtained through anodic oxidation. Russ. J. of Alternative Power Supply and Ecology. 1 (2007) 65-69.

Google Scholar

[9] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy / Surf. Interface Anal. 27 (1999) 629–637.

DOI: 10.1002/(sici)1096-9918(199907)27:7<629::aid-sia551>3.0.co;2-0

Google Scholar

[10] N.V. Korovin, E.V. Kasatkin, Electrocatalyzers of Electrochemical Facilities, Russ. J. Elecrochem. 29 (1993) 448-460.

Google Scholar

[11] D.V. Malevich, A.F. Mazetz, V.B. Drozdovich, I.M. Zharskii, Influence of preparation method of Ptmet/Ti catalyst on some properties of active phase, Russ. J. Appl. Chem. 70 (1997) 1330-1333.

Google Scholar

[12] G.I. Marinina, M.S. Vasilyeva, A.S. Lapina, O.D. Arefyeva, N.B. Kondrikov, The metal–oxide electrodes formed plasma electrolytic oxidation for the potentiometric determination of alkalinity and chlorides in waters technogenic, Russ. J. Analytics and Control. 17 (2013).

DOI: 10.15826/analitika.2013.17.3.003

Google Scholar

[13] G.I. Marinina, M.S. Vasilyeva, A. Yu. Ustinov, V.S. Rudnev, Electroanalytical properties of metal–oxide electrodes formed by plasma electrolytic oxidation, J. Electroanal. Chem. 689 (2013) 262–268.

DOI: 10.1016/j.jelechem.2012.10.032

Google Scholar

[14] A. I. Shcherbakov, I. V. Kasatkina, V. E. Kasatkin, V. I. Zolotarevskii, Impedance of titanium electrode with a nanotube anode, Prot. Met. Phys. Chem. 50 (2014) 195-199.

DOI: 10.1134/s2070205114020154

Google Scholar

[15] J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Smooth anodic TiO2 nanotubes, Angew. Chem. Int. Ed. 44 (2005) 7463–7465.

DOI: 10.1002/anie.200502781

Google Scholar

[16] D. Regonini, A. Jaroenworaluck, R. Stevens, C.R. Bowen, Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition, Surf. Interface Anal. 42 (2010) 139–144.

DOI: 10.1002/sia.3183

Google Scholar

[17] B.B. Damaskin, O.A. Petrii, G.A. Tsirlina, Electrochemistry, Khimia, KolosS, Moscow, (2006).

DOI: 10.1134/s1023193507080186

Google Scholar

[18] N. F. Razina, Oxydic electrodes in aqueous solutions, Science, Almaty, (1982).

Google Scholar