[1]
S.A. Novikova, S.A. Yaroslavtsev, V.S. Rusakov, T.L. Kulova, A.M. Skundin, A.B. Yaroslavtsev, Lithium intercalation and deintercalation into lithium–iron phosphates doped with cobalt, Mendeleev Commun. 23 (2013) 251-252.
DOI: 10.1016/j.mencom.2013.09.003
Google Scholar
[3]
S.V. Makaev, V.K. Ivanov, O.S. Polezhaeva, Yu.D. Tret'yakov, T.L. Kulova, A.M. Skundin, O.A. Brylev, Electrochemical intercalation of lithium into nanocrystalline ceria, Russ. J. Inorg. Chem. 55 (2010) 991-994.
DOI: 10.1134/s0036023610070016
Google Scholar
[3]
A.V. Churikov, A.V. Ivanishchev, I.A. Ivanishcheva, K.V. Zapsis, I.M. Gamayunova, V.O. Sycheva, Kinetics of electrochemical lithium intercalation into thin tungsten (VI) oxide layers, Russ. J. Electrochem. 44 (2008) 530-542.
DOI: 10.1134/s1023193508050054
Google Scholar
[4]
M.V. Reddy, S. Madhavi, G.V. Subba Rao, B.V.R. Chowdari, Metal oxyfluorides TiOF2 and NbO2F as anodes for Li-ion batteries, J. Power Sources 162 (2006) 1312-1321.
DOI: 10.1016/j.jpowsour.2006.08.020
Google Scholar
[5]
J. Tan, L. Liu, S. Guo, H. Hu, Z. Yan, Q. Zhou, Z. Huang, H. Shu, X. Yang, X. Wang, The electrochemical performance and mechanism of cobalt (II) fluoride as anode material for lithium and sodium ion batteries / Electrochim. Acta 168 (2015).
DOI: 10.1016/j.electacta.2015.04.029
Google Scholar
[6]
K. Rui, Z. Wen, Y. Lu, J. Jin, C. Shen, One-step solvothermal synthesis of nanostructured manganese fluoride as an anode for rechargeable lithium-ion batteries and insights into the conversion mechanism. Adv. Energy Mater. 5 (2015) 1401716.
DOI: 10.1002/aenm.201401716
Google Scholar
[7]
L. Liu, X. Wang, X. Wang, X. Wang, F. Tian, L. Yi, Synthesis and electrochemical performance of bismuth–vanadium oxyfluoride, Electrochim. Acta 56 (2011) 7437-7441.
DOI: 10.1016/j.electacta.2011.07.008
Google Scholar
[8]
Y. Zeng, W. Zhang, C. Xu, N. Xiao, Y. Huang, D.Y.W. Yu, H.H. Hng, Q. Yan, One-step solvothermal synthesis of single-crystalline TiOF2 nanotubes with high lithium-ion battery performance, Chem. Eur. J. 18 (2012) 4026-4030.
DOI: 10.1002/chem.201103879
Google Scholar
[9]
P.E. Meskin, D.R. Afanas'ev, A.I. Gavrilov, B.R. Churagulov, N.N. Oleinikov, A.E. Baranchikov, V.K. Ivanov, Ultrasonically activated hydrothermal synthesis of fine TiO2 and ZrO2 powders, Inorg. Mater. 40 (2004) 1058-1065.
DOI: 10.1023/b:inma.0000046468.73127.f5
Google Scholar
[10]
S.V. Gnedenkov, D.P. Opra, S.L. Sinebryukhov, Kuryavyi V.G., Ustinov А. Yu., Sergienko V.I. Structural and electrochemical investigation of nanostructured C: TiO2–TiOF2 composite synthesized in plasma by an original method of pulsed high-voltage discharge, J. Alloy. Compd. 621 (2015).
DOI: 10.1016/j.jallcom.2014.10.023
Google Scholar
[11]
V.G. Kuryavyi, A. Yu. Ustinov, D.P. Opra, G.A. Zverev, T.A. Kaidalova, Composite containing nanosized titanium oxide and oxyfluoride and carbon synthesized in plasma of pulse high-voltage discharge, Mater. Lett. 137 (2014) 398-400.
DOI: 10.1016/j.matlet.2014.09.007
Google Scholar
[12]
I. D. Gocheva, I. Tanaka, T. Doi, S. Okada, J. Yamaki, A new iron oxyfluoride cathode active material for Li-ion battery, Fe2OF4, Electrochem. Commun. 11 (2009) 1583-1585.
DOI: 10.1016/j.elecom.2009.06.001
Google Scholar
[13]
L. Yu, H. -X. Wang, Z. -Y. Liu, Z. -W. Fu, Pulsed laser deposited FeOF as negative electrodes for rechargeable Li batteries, Electrochim. Acta 56 (2010) 767-775.
DOI: 10.1016/j.electacta.2010.09.103
Google Scholar
[14]
S.V. Gnedenkov, D.P. Opra, S.L. Sinebryukhov, A.K. Tsvetnikov, A.Y. Ustinov, V.I. Sergienko, Hydrolysis lignin: electrochemical properties of the organic cathode material for primary lithium battery, J. Ind. Eng. Chem. 20 (2014) 903-910.
DOI: 10.1016/j.jiec.2013.06.021
Google Scholar
[15]
J. Tan, L. Liu, H. Hu, Z. Yang, H. Guo, Q. Wei, X. Yi, Z. Yan, Q. Zhou, Z. Huang, H. Shu, X. Yang, X. Wang, Iron fluoride with excellent cycle performance synthesized by solvothermal method as cathodes for lithium ion batteries, J. Power Sources 251 (2014).
DOI: 10.1016/j.jpowsour.2013.11.004
Google Scholar
[16]
F. Cosandey, D. Su, M. Sina, N. Pereira, G.G. Amatucci, Fe valence determination and Li elemental distribution in lithiated FeO0. 7F1. 3/C nanocomposite battery materials by electron energy loss spectroscopy (EELS), Micron 43 (2012) 22-29.
DOI: 10.1016/j.micron.2011.05.009
Google Scholar
[17]
A. Kitajou, H. Komatsu, R. Nagano, S. Okada, Synthesis of FeOF using roll-quenching method and the cathode properties for lithium-ion battery, J. Power Sources 243 (2013) 494-498.
DOI: 10.1016/j.jpowsour.2013.06.053
Google Scholar
[18]
H.J. Tan, H.L. Smith, L. Kim, T.K. Harding, S.C. Jones, B. Fultz, Electrochemical cycling and lithium insertion in nanostructured FeF3 cathodes, J. Electrochem. Soc. 161 (2014) A445-A449.
DOI: 10.1149/2.096403jes
Google Scholar
[19]
M.V. Reddy, G.V.S. Rao, B.V.R. Chowdari, Nano-(V1/2Sb1/2Sn)O4: a high capacity, high rate anode material for Li-ion batteries, J. Mater. Chem. 21 (2011) 10003-10011.
DOI: 10.1039/c0jm04140h
Google Scholar
[20]
T.L. Kulova, Minimal irreversible capacity caused by the lithium insertion into materials of negative electrodes in lithium-ion batteries, Russ. J. Electrochem. 47 (2011) 965-967.
DOI: 10.1134/s1023193511080076
Google Scholar