[1]
E.A. Loria, Gamma titanium aluminides as prospective structural materials, Intermetallics 8 (2000) 1339-1345.
DOI: 10.1016/s0966-9795(00)00073-x
Google Scholar
[2]
M. Goral, L. Swadźba, G. Moskal, G. Jarczyk, J. Aguilar, Diffusion aluminide coatings for TiAl intermetallic turbine blades, Intermetallics 19 (2011) 744-747.
DOI: 10.1016/j.intermet.2010.12.015
Google Scholar
[3]
H. Clemens, S. Mayer, Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys, Adv. Eng. Mater. 15 (2013) 191-215.
DOI: 10.1002/adem.201200231
Google Scholar
[4]
J.N. Wang, J. Yang, Q. Xia, Y. Wang, On the grain size refinement of TiAl alloys by cyclic heat treatment, Mater. Sci. Eng. A 329-331 (2002) 118-123.
DOI: 10.1016/s0921-5093(01)01543-x
Google Scholar
[5]
A. Szkliniarz, W. Szkliniarz, Effect of cyclic heat treatment parameters on the grain refinement of Ti-48Al-2Cr-2Nb alloy, Mater. Charact. 60 (2009) 1158-1162.
DOI: 10.1016/j.matchar.2009.03.008
Google Scholar
[6]
A. Szkliniarz, Grain refinement of Ti-48Al-2Cr-2Nb alloy by heat treatment method, Solid State Phenom. 191 (2012) 221-234.
DOI: 10.4028/www.scientific.net/ssp.191.221
Google Scholar
[7]
A. Szkliniarz, W. Szkliniarz, Multi-stage heat treatment of second generation TiAl based alloys, Solid State Phenom. 211 (2014) 129-140.
DOI: 10.4028/www.scientific.net/ssp.211.129
Google Scholar
[8]
W. Szkliniarz, J. Chrapoński, A. Kościelna, B. Serek, Substructure of titanium alloys after cyclic heat treatment, Mater. Chem. Phys. 81 (2003) 538-541.
DOI: 10.1016/s0254-0584(03)00069-5
Google Scholar
[9]
T. Cheng, The mechanism of grain refinement in TiAl alloys by boron addition-an alternative hypothesis, Intermetallics 8 (2000) 29-37.
DOI: 10.1016/s0966-9795(99)00063-1
Google Scholar
[10]
W. Szkliniarz, A. Szkliniarz, Effect of boron addition on the microstructure of Ti-47Al-2W-0. 5Si alloy, Solid State Phenom. 212 (2014) 29-32.
DOI: 10.4028/www.scientific.net/ssp.212.29
Google Scholar
[11]
C. Liu, K. Xia, W. Li, The comparison of effect of four rare earth elements additions on structure and grain size of Ti-44Al alloy, J. Mater. Sci. 37 (2002) 1515-1522.
Google Scholar
[12]
H. Park, S. Nam, N. Kim, S. Hwang, Refinement of the lamellar structure in TiAl-based intermetallic compound by addition of carbon, Scripta Mater. 11 (1999) 1197-1203.
DOI: 10.1016/s1359-6462(99)00266-3
Google Scholar
[13]
F.S. Sun, F.H. Froes, Solidification behavior of Ti5Si3 whiskers in TiAl alloys, Mater. Sci. Eng. A 345 (2003) 262-269.
DOI: 10.1016/s0921-5093(02)00480-x
Google Scholar
[14]
A. Szkliniarz, W. Szkliniarz, Assessment quality of Ti alloys melted in induction furnace with ceramic crucible, Solid State Phenom. 176 (2011) 139-148.
DOI: 10.4028/www.scientific.net/ssp.176.139
Google Scholar
[15]
W. Szkliniarz, A. Szkliniarz, The chemical composition and microstructure of Ti-47Al-2W-0. 5Si alloy melted in ceramic crucibles, Solid State Phenom. 191 (2012) 211-220.
DOI: 10.4028/www.scientific.net/ssp.191.211
Google Scholar
[16]
A. Szkliniarz, W. Szkliniarz, Microstructure and properties of Ti-47Al-2W-0. 5Si cast alloy, Solid State Phenom. 226 (2015) 3-6.
DOI: 10.4028/www.scientific.net/ssp.226.3
Google Scholar
[17]
W. Szkliniarz, A. Szkliniarz, Quantitative characterization of microstructure of Ti-47Al-2W-0. 5Si alloy after melting in vacuum induction furnace, Solid State Phenom. 197 (2013) 113-118.
DOI: 10.4028/www.scientific.net/ssp.197.113
Google Scholar