Precipitation Processes in HR6W Alloy after Long-Term Ageing

Article Preview

Abstract:

Heat resistance and microstructure stability at elevated temperature in HR6W alloy is the result of strong appreciation of the solution by adding tungsten and strengthening precipitation. Structural studies were made after the annealing process at a temperature of 750°C. The heat treatment was carried out for up to 5000 hours. Microstructure stability of HR6W alloy was evaluated by the action of elevated temperature. Identification of precipitates produced using the method of selective electron diffraction (SAED) and chemical composition analysis using a transmission electron microscope by technique STEM.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 246)

Pages:

33-38

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.P. Shingledecker, N.D. Evans, Creep-rupture performance of 0. 07C–23Cr–45Ni–6W–Ti, Nb austenitic alloy (HR6W) tubes, Int. J. Pres. Ves. Pip. 87 (2010) 345-350.

DOI: 10.1016/j.ijpvp.2010.03.011

Google Scholar

[2] S.H. Cui, Z. Zhang, Y. Xu, J. Li, X. Xiao, Ch. Zhu, Improvement of stress–rupture life for modified–HR6W austenitic stainless steel, J. Mater. Sci. Technol. 27 (11) (2011) 1059-1064.

DOI: 10.1016/s1005-0302(11)60186-2

Google Scholar

[3] T. Tokairin, K.V. Dahl, H.K. Danielson, F.B. Grumsen, T. Sato, J. Hald, Investigation on long–term creep rupture properties and microstructure stability of Fe–Ni based alloy Ni–23Cr–7W at 700°C, Mat. Sci. Eng. A–Struct. 565 (2013) 285-291.

DOI: 10.1016/j.msea.2012.12.019

Google Scholar

[4] Y. Noguchi, H. Okada, H. Semba, M. Yoshizawa, Isothermal, thermo–mechanical and bithermal fatigue life of Ni base alloy HR6W for piping in 700°C USC power plants, Procedia Eng. 10 (2011) 1127-1132.

DOI: 10.1016/j.proeng.2011.04.186

Google Scholar

[5] H. Hirata, H. Ogawa, Y. Yoshizawa, T. Ono, K. Yotoku, H. Okada, Stress relaxation cracking susceptbility of 23Cr–45Ni–7W alloy for advanced high efficient power plant, Proc. of 3rd International Conference Powerwelding, Ostaniec, 2013, 275-284.

Google Scholar

[6] K. Cieszyński, B. Rutkowski, J. Jelita–Rydel, G. Cempura, A. Czyrska-Filemonowicz, Influence of high temperature on the microstructure of HR6W nickel-base alloy, Materials 6th HIDA Conference on Defect Assesment and Failure in High temperature Plant, Nagoya (2013).

Google Scholar

[7] A. Hernas, P. Jamrozik, J. Pasternak, S. Fudali, Characteristics of the structure of welded joints in HR6W alloy, Energetyka - Publisher Association of Polish Engineers SEP, 11 (2012) 687-692.

Google Scholar

[8] P. Jamrozik, K. Sieczkowski, Characteristics of the structure and basic mechanical properties of welded joints in HR6W alloy, in: XVI International Students' Scientific Session, Silesian University of Technology, Katowice, Poland, 2014, pp.45-48.

Google Scholar

[9] M. Lipińska–Chwałek, M.G. Stein–Brzozowska, B. Rutkowski, A. Gil, J. Maier, A. Czyrska–Filemonowicz, Microstructural aspects of the fire-side corrosion of HR6W and Sanicro 25 austenitic alloys, Proceedings of 10th Liege Conference, Liege, Belgium, 2014, pp.737-745.

Google Scholar

[10] S. Muneki, H. Okuba, F. Abe, Creep property of carbon and nitrogen free high strength new alloys, Int. J. Pres. Ves. Pip. 87 (2010) 351-356.

DOI: 10.1016/j.ijpvp.2010.03.015

Google Scholar

[11] M. Tabuchi, H. Hongo, F. Abe, Creep strength of dissimilar welds for advanced USC boiler materials, Proc. of 13th International Conference on Fracture, Beijing, China, June 16-21, 2013, pp.1-7.

DOI: 10.1115/pvp2013-97659

Google Scholar

[12] R. Rautio, S. Bruce, Alloy for ultracupercritical coal fired boilers, Adv. Mater. Process. 166 (4) (2008) 35-37.

Google Scholar

[13] M. Jafarzadegan, A.H. Feng, A. Abdollah–Zadeh, T. Saeid, J. Shen, H. Assadi, Microstructure and mechanical properties of a dissimilar friction stir weld between austenitic stainless steel and low carbon steel, J. Mater. Sci. Technol. 29 (4) (2013).

DOI: 10.1016/j.jmst.2013.02.008

Google Scholar