Tribological Properties of In Situ Composite Obtained from Sintered Mg-Ti-Al Powder Mixture

Article Preview

Abstract:

In the experiment reported in this paper, the friction coefficient (μ) and the mass loss of the metal matrix composite obtained from a powder mixture of Mg, Ti and Al sintered at 640, 650 and 660ºC, with the other parameters held constant, were determined in the dry sliding test at the total distance of 120 m. The sliding speeds of 0.06, 0.09 and 0.14 m/s, and the loads of 2.3, 5 and 9.3 N were applied, as well as a slider made of the EN-GJL300 cast iron. The value of the friction coefficient decreased with the speed and the load, and, for most of the applied friction parameters, it was very low (0.025-0.2). Some influence of the sintering temperature on the mean value of μ and the profile of μ versus the friction distance curve was revealed, yet in the case of the lowest friction speed and load only. An increase of the composite mass loss with the load was revealed, but the wear was generally very low. For a characterization of the composite and its surface after tribological tests, a scanning electron microscope (SEM) with an energy dispersive spectrometer (EDS) was employed. On the worn surface, effects of abrasion and deformation were visible, but no Ti particle degradation or pulling out were found.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 246)

Pages:

163-170

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Umeda, M. Kawakami, K. Kondoh, E. Ayman, H. Imai, Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials, Mater. Chem. Phys. 123 (2010) 649–657.

DOI: 10.1016/j.matchemphys.2010.05.033

Google Scholar

[2] K. Kondoh, M. Kawakami, H. Imai, J. Umeda, H. Fujii, Wettability of pure Ti by molten pure Mg droplets, Acta Mater. 58 (2010) 606–614.

DOI: 10.1016/j.actamat.2009.09.039

Google Scholar

[3] L. Lua, M.O. Laia, L. Froyen, Effects of mechanical milling on the properties of Mg–10. 3% Ti and Mg–5% Al–10. 3% Ti metal–metal composite, J. Alloy. Compd. 387 (2005) 260–264.

DOI: 10.1016/j.jallcom.2004.06.083

Google Scholar

[4] G.J. Xue, S.R. Wang, P. Li, Y. Qiao, Y. Han, Microstructure and Mechanical Properties of Laminated Mg-Based Composites, Adv. Mater. Res. 941-944 (2014) 883-886.

DOI: 10.4028/www.scientific.net/amr.941-944.883

Google Scholar

[5] Z. Esen, B. Dikici, O. Duygulu, A.F. Dericioglu, Titanium–magnesium based composites: Mechanical properties and in-vitro corrosion response in Ringer's solution, Mat. Sci. Eng. A573 (2013) 119–126.

DOI: 10.1016/j.msea.2013.02.040

Google Scholar

[6] A. Olszówka-Myalska, R. Przeliorz, T. Rzychoń, M. Misiowiec, Microstructure of Mg-Ti-Al composite hot pressed at different temperature, Solid State Phenom. 191 (2012) 199-207.

DOI: 10.4028/www.scientific.net/ssp.191.199

Google Scholar

[7] H. Ferkel , B.L. Mordike, Magnesium strengthened by SiC nanoparticles, Mater. Sci. Eng. A298 (2001) 193–199.

Google Scholar

[8] C.R. Bradbury C.R. Bradbury, J. -K. Gomon, L. Kollo, H. Kwon, M. Leparoux, Hardness of multi wall carbon nanotubes reinforced aluminium matrix composites, J. Alloy. Compd. 585 (2014) 362–367.

DOI: 10.1016/j.jallcom.2013.09.142

Google Scholar

[9] C. Veiga, J.P. Davimand A.J.R. Loureiro, Properties and applications of titanium alloys: a brief review, Rev. Adv. Mater. Sci. 32 (2012) 133-148.

Google Scholar

[10] S.R. Chauhan, K. Dass, Dry Sliding Wear Behaviour of Titanium (Grade 5) Alloy by Using Response Surface Methodology, Adv. Tribol. (2013) doi: 10. 1155/2013/272106.

DOI: 10.1155/2013/272106

Google Scholar

[11] A. Olszówka-Myalska, J. Myalski, A. Botor-Probierz, Effect of glassy carbon particles on wear resistance of AZ91E matrix composite, Solid State Phenom. 176 (2011) 127-138.

DOI: 10.4028/www.scientific.net/ssp.176.127

Google Scholar

[12] P. Chartrand, A.D. Pelton, Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the Al-Mg, Al-Sr, Mg-Sr, and Al-Mg-Sr systems, J. Phase. Equilibr. (1994) 591-605.

DOI: 10.1007/bf02647620

Google Scholar

[13] D. Batalu, G. Cosmeleata, A. Aloman, Critical analysis of the Ti-Al phase diagrams, U.P.B. Sci. Bull. Series B 68/4 (2006) 77-90.

Google Scholar

[14] A. Olszówka-Myalska, J. Myalski, Magnesium alloy AZ31 ̶ short carbon fiber composite obtained by pressure die casting, Solid State Phenom. 229 (2015) 115-122.

DOI: 10.4028/www.scientific.net/ssp.229.115

Google Scholar

[15] A. Olszówka-Myalska, J. Myalski, B. Hekner, Tribological characteristics of the magnesium matrix-glassy carbon particles composite manufactured by different casting methods, Conference Papers in Science (2015), doi: 10. 1155/2015/919308.

DOI: 10.1155/2015/919308

Google Scholar

[16] A. Olszówka-Myalska, J. Myalski, J. Chrapoński, Influence of casting procedure on microstructure and properties of Mg alloy – glassy carbon particle composite, Int. J. Mater. Res. (2015), doi: 10. 3139/146. 111227.

DOI: 10.3139/146.111227

Google Scholar

[17] Z.R. Yang, S.Q. Wang, M.J. Gao, Y.T. Zhao, K.M. Chen, X.H. Cui, A new-developed magnesium matrix composite by reactive sintering, Composites: Part A 39 (2008) 1427–1432.

DOI: 10.1016/j.compositesa.2008.05.002

Google Scholar

[18] D. Dietrich, D. Nickel, M. Krause, T. Lampke, M. P. Coleman, V. Randle, Formation of intermetallic phases in diffusion-welded joints of aluminium and magnesium alloys, J. Mater. Sci. 46 (2011) 357–364.

DOI: 10.1007/s10853-010-4841-5

Google Scholar

[19] A. Kiełbus, G. Moskal, The influence of Mg17Al12 phase volume fraction on the corrosion behaviour of AZ91 magnesium alloy, Int. J. Microstr. Mater. Pro. 4 (2009) 196-206.

Google Scholar

[20] H. -J. Lee, B. Ahn, M. Kawasaki, T.G. Langdon, Evolution in hardness and microstructure of ZK60A magnesium alloy processed by high-pressure torsion, J. Mater. Res. Tech. 4 (2015) 18-25.

DOI: 10.1016/j.jmrt.2014.10.015

Google Scholar

[21] A. Posmyk, J. Myalski, Producing of composite materials with aluminium alloy matrix containing solid lubricants, Solid State Phenom. 191 (2012) 67-74.

DOI: 10.4028/www.scientific.net/ssp.191.67

Google Scholar