[1]
J. Zeldovich, The Oxidation of Nitrogen in Combustion and Explosions, Acta Physicochimica U.S.S. R 21/4 (1946) 578-628.
Google Scholar
[2]
C.T. Bowman, Control of combustion – generated nitrogen oxide emissions: tehnology driven by regulation, 24th Symposium (Int. ) on Combustion, Combustion Institute Pittsburgh (1992) 859-878.
DOI: 10.1016/s0082-0784(06)80104-9
Google Scholar
[3]
K.K. Rink, A. H. Lefebvre, The Influences of Fuel Composition and Spray Characteristics on Nitric Oxide Formation, Combustion Science and Technology 68 (1989) 1-14.
DOI: 10.1080/00102208908924066
Google Scholar
[4]
W. Nowak, M. Janik, The formation and destruction of nitrous oxide N2O in the process of combustion of fuels (in Polish), Gospodarka Paliwami i Energią 6 (1995) 19-25.
Google Scholar
[5]
J. Tomeczek, Possibility to reduce emissions of nitrogen oxides from industrial furnaces fired with natural gas (in Polish), Gospodarka Paliwami i Energią 3 (1994) 2-4.
Google Scholar
[6]
J. Tomeczek, W. Bialik, Effect of preheating combustion air in the oil burner on the emission of CO, NOx and soot (in Polish), Gospodarka paliwami 49/8 (2001) 21-26.
Google Scholar
[7]
J. Tomeczek, W. Bialik, Influence of liquid fuel combustion conditions on pollutants emission, Journal of the Institute of Energy 76/507 (2003) 54-61.
Google Scholar
[8]
J. Blauvens, B. Smets, J. Peeters, Mechanism of prompt, NO formation in hydro-carbon flames, Proceedings of 16th International Symposium on Combustion, The Combustion Institute Pittsburgh (1977) 1055-1064.
DOI: 10.1016/s0082-0784(77)80395-0
Google Scholar
[9]
W.L. Flower, R.K. Hanson, C.H. Kruger, Kinetics of the reaction of nitric oxide with hydrogen, Proceedings of 15th International Symposium on Combustion, The Combustion Institute Pittsburgh (1975) 823-832.
DOI: 10.1016/s0082-0784(75)80350-x
Google Scholar
[10]
J.P. Monat, R.K. Hanson, C.H. Kruger, Shock tube determination of the rate coefficient for the reaction N2 + O ® NO + N, Proceedings of 17th International Symposium on Combustion, The Combustion Institute Pittsburgh (1979) 543-552.
DOI: 10.1016/s0082-0784(79)80055-7
Google Scholar
[11]
R.K. Hanson, S. Salimian, Survey of Rate Constants in H/N/O Systems, Combustion Chemistry, W.C. Gardiner (1984).
Google Scholar
[12]
C.P. Fenimore, Formation of nitric oxide in premixed hydrocarbon flames. Proceedings of 13th International Symposium on Combustion, Combustion Institute Pittsburgh (1971) 373-379.
DOI: 10.1016/s0082-0784(71)80040-1
Google Scholar
[13]
G.G. de Soete, Overall Reaction Rates of NO and N2 Formation from Fuel Nitrogen, Proceedings of 15th International Symposium on Combustion, The Combustion Institute, Pittsburgh (1975) 1093-1102.
DOI: 10.1016/s0082-0784(75)80374-2
Google Scholar
[14]
C.P. Fenimore, H.A. Fraenkel, Formation and interconversion of fixed-nitrogen species in laminar diffusion flames, Proceedings of 18th International Symposium on Combustion, Combustion Institute Pittsburgh (1981) 143-149.
DOI: 10.1016/s0082-0784(81)80019-7
Google Scholar
[15]
W. Bialik, The impact of gas dynamic and thermal parameters of substrates for emissions of nitrogen oxides during the combustion of liquid hydrocarbon fuels (in Polish), Doctor thesis, Silesian University of Technology, Faculty of Materials Engineering, Metallurgy and Transport, Katowice, Poland, (2002).
Google Scholar
[16]
J.A. Wünning, J.G. Wünning, Flameless Oxidation to Reduce Thermal NO-Formation, Progress in Energy and Combustion Science 23/1 (1997) 81-94.
DOI: 10.1016/s0360-1285(97)00006-3
Google Scholar
[17]
J. Tomeczek, S. Gil, Influence of pressure on the rate of nitric oxide reduction by char, Combustion and Flame 126 (2001) 1602 – 1606.
DOI: 10.1016/s0010-2180(01)00260-7
Google Scholar
[18]
P. Glarborg, J. Miller, R.J. Kee, Kinetic modeling and sensivity analysis of nitric oxide formation in well-stirred reactors, Combustion and Flame 65 (1986) 177-202.
DOI: 10.1016/0010-2180(86)90018-0
Google Scholar