[1]
K. Chung, S. Park, S. Choi, Fire resistance of concrete filled square steel tube columns subjected to eccentric axial load, Steel Struct. 9 (2009) 69-76.
DOI: 10.1007/bf03249481
Google Scholar
[2]
A. Espinos, Numerical analysis of the fire resistance of circular and elliptical slender concrete filled tubular columns, PhD thesis, Polytechnic University of Valencia, (2012).
DOI: 10.4995/thesis/10251/17579
Google Scholar
[3]
A. Espinos, M.L. Romero, A. Hospitaler, Advanced model for predicting the fire response of concrete filled tubular columns, J. Constr. Steel Res. 66 (2010) 1030-1046.
DOI: 10.1016/j.jcsr.2010.03.002
Google Scholar
[4]
T.T. Lie, M. Chabot, A method to predict the fire resistance of circular concrete filled hollow steel columns, J. Fire Prot. Engr. 2 (1990) 111-126.
DOI: 10.1177/104239159000200402
Google Scholar
[5]
A.Y. Nassif, Finite element thermal analysis of concrete filled hollow steel sections during fires, Emirates J. Eng. Res. 9 (2004) 111-115.
Google Scholar
[6]
T. -Y. Song, L. -H. Han, H. -X. Yu, Concrete filled steel tube stub columns under combined temperature and loading, J. Constr. Steel Res. 66 (2010) 369-384.
DOI: 10.1016/j.jcsr.2009.10.010
Google Scholar
[7]
R. Štefan, Transport Processes in Concrete at High Temperatures. Mathematical Modelling and Engineering Application with Focus on Concrete Spalling, PhD thesis, CTU in Prague, (2015).
Google Scholar
[8]
Y.C. Wang, A simple method for calculating the fire resistance of concrete-filled CHS columns, J. Constr. Steel Res. 54 (2000) 365-386.
DOI: 10.1016/s0143-974x(99)00061-9
Google Scholar
[9]
Z. -H. Wang, K. -H. Tan, Temperature prediction for contour-insulated concrete-filled CHS subjected to fire using large time Green's function solutions, J. Constr. Steel Res. 63 (2007) 997-1007.
DOI: 10.1016/j.jcsr.2006.08.014
Google Scholar
[10]
X.X. Zha, FE analysis of fire resistance of concrete filled CHS columns, J. Constr. Steel Res. 59 (2003) 769-779.
DOI: 10.1016/s0143-974x(02)00059-7
Google Scholar
[11]
Z. Tao, M. Ghannam, Heat transfer in concrete-filled carbon and stainless steel tubes exposed to fire, Fire Saf. J. 61 (2013), 1-11.
DOI: 10.1016/j.firesaf.2013.07.004
Google Scholar
[12]
T. Hozjan, M. Saje, S. Srpčič, I. Planinc, Fire Analysis of steel-concrete composite beam with interlayer slip, Comp. Struct. 89 (2011) 189-200.
DOI: 10.1016/j.compstruc.2010.09.004
Google Scholar
[13]
J. Ožbolt, G. Periškić, H. -W. Reinhardt, R. Eligehausen, Numerical analysis of spalling of concrete cover at high temperature, Comput. Concrete 5 (2008) 279-293.
DOI: 10.12989/cac.2008.5.4.279
Google Scholar
[14]
Z. P. Bažant, W. Thonguthai, Pore pressure and drying of concrete at high temperature, Proc. ASCE, J. Eng. Mech. Div. 104 (1978), 1059-1079.
DOI: 10.1061/jmcea3.0002404
Google Scholar
[15]
Z. P. Bažant, M. F. Kaplan, Concrete at High Temperatures, Material Properties and Mathematical Models, Concrete Design and Construction Series, Longman, (1996).
Google Scholar
[16]
T.T. Lie, M. Chabot, Experimental Studies on the Fire Resistance of Hollow Steel Columns Filled with Plain Concrete, Internal Report No. 611, National Research Council Canada, (1992).
Google Scholar
[17]
J. M. Bergheau, R. Fortunier, Finite Element Simulation of Heat Transfer, Wiley, (2008).
Google Scholar
[18]
EN 1992-1-2, Eurocode 2: Design of concrete structures – Part 1-2: General rules – Structural fire design, CEN, (2004).
Google Scholar
[19]
EN 1993-1-2, Eurocode 3: Design of steel structures – Part 1-2: General rules – Structural fire design, CEN, (2005).
DOI: 10.1002/9783433601570.oth1
Google Scholar
[20]
EN 1994-1-2, Eurocode 4: Design of composite steel and concrete structures – Part 1-2: General rules – Structural fire design, CEN, (2005).
DOI: 10.3403/30111111
Google Scholar