The Influence of Liquid Refrigerant on Refrigerating Compressors Sliding Surfaces

Article Preview

Abstract:

Reasons of compressors failures are connected with different operating conditions of individual parts. One of compressor damage reasons is pouring it over with liquid refrigerant. The purpose of this work was to carry out tests concerning the influence of refrigerant being in the liquid phase on piston compressor sliding surfaces. Tests were carried out in the mixture of synthetic polyester oil with liquid refrigerant R134a. The tests were performed with the use of the friction machine and the pair type block-on-ring simulating the refrigerating compressor inside and with the use of the real refrigerating compressor. The obtained results confirm the unfavourable influence of liquid refrigerant on friction elements in the refrigerating compressor. The role of hydrodynamic phenomena in the development of damage to the compressors has been showed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 252)

Pages:

111-120

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Tyczewski, Analiza przyczyn uszkodzeń sprężarek chłodniczych, Logistyka, 3/(2011), s. 2871-2875.

Google Scholar

[2] P. Tyczewski, Przykłady uszkodzeń sprężarek chłodniczych, Logistyka 03/(2012), s. 2333-2336.

Google Scholar

[3] Why Compressors Fail Part 1 – Refrigerant Flood Back, Danfoss (2006).

Google Scholar

[4] K. Górny, P. Tyczewski, W. Zwierzycki, Description of the experimental method and procedure of model wear test of refigeration compressors, parts, Solid State Phenomena Vol. 225 (2015) pp.85-92.

DOI: 10.4028/www.scientific.net/ssp.225.85

Google Scholar

[5] A.Y. Suh, J.J. Patel, A.A. Polycarpou, T.F. Conry: Scuffing of cast iron and Al390-T6 materials used in compressor applications, Wear, 260(7-8), (2006), pp.735-744.

DOI: 10.1016/j.wear.2005.04.013

Google Scholar

[6] J.D.B., De Melloa, R. Binderb, N.G., Demasc, A.A., Polycarpouc, Effect of the actual environment present in hermetic compressors on the tribological behaviour of a Si-rich multifunctional DLC coating, Wear 267 (2009) p.907–915.

DOI: 10.1016/j.wear.2008.12.070

Google Scholar

[7] H.C. Sung: Tribological characteristics of various surface coatings for rotary compressor vane, Wear, 221(2), (1998), pp.77-85.

DOI: 10.1016/s0043-1648(98)00244-0

Google Scholar

[8] Hong-Gyu Jeon, Se-Doo Oh, Young-Ze Lee: Friction and wear of the lubricated vane and roller materials in a carbon dioxide refrigerant, Wear, 267(5-8), (2009), pp.1252-1256.

DOI: 10.1016/j.wear.2008.12.097

Google Scholar

[9] M.L. Cannaday, A.A. Polycarpou: Advantages of CO2 compared to R410a refrigerant of tribologically tested Aluminum 390-T6 surfaces, Tribology Letters, 21(3), (2006), pp.185-192.

DOI: 10.1007/s11249-005-9013-4

Google Scholar

[10] N.G. Demas, A.A. Polycarpou: Tribological investigation of cast iron air-conditioning compressor surfaces in CO2 refrigerant, Tribology Letters, 22(3), (2006), pp.271-278.

DOI: 10.1007/s11249-006-9094-8

Google Scholar

[11] N.P. Garland, M. Hadfield: Tribological analysis of hydrocarbon refrigerants applied to the hermetic compressor, Tribology International, 38(8), (2005), pp.732-739.

DOI: 10.1016/j.triboint.2004.10.009

Google Scholar

[12] Y. Birol, F. Birol: Sliding wear behaviour of thixoformed AlSiCuFe alloys, Wear, 265(11-12), (2008), p.1902-(1908).

DOI: 10.1016/j.wear.2008.05.001

Google Scholar

[13] P. Tyczewski, Brak oleju przyczyną uszkodzenia samochodowej sprężarki chłodniczej, Logistyka 3/(2014), s. 6458-6462.

Google Scholar

[14] K. Górny, P. Tyczewski, W. Zwierzycki, Specification of lubricating oil operation in refrigeration compressors, Tribologia, 3/(2010), s. 63-73.

Google Scholar

[15] J. Chmiel, R. Jasionowski, D. Zasada, Cavitation Erosion and Corrosion of Pearlitic Gray Cast Iron in Non-Standardized Cavitation Conditions, Solid State Phenomena Vol. 225 (2015) p.19 – 24.

DOI: 10.4028/www.scientific.net/ssp.225.19

Google Scholar

[16] M. Dojcinovic, et al. The morphology of ductile cast iron surface damaged by cavitation, Metall. Mater. Eng. 18 (2012) 165–176.

Google Scholar

[17] S. Hattori, T. Kitagawa, Analysis of cavitation erosion resistance of cast iron and nonferrous metals based on database and comparison with carbon steel data, Wear. 269 (2010) 443 – 448.

DOI: 10.1016/j.wear.2010.04.031

Google Scholar

[18] Shen Cong; M.M. Khonsari, On the Magnitude of Cavitation Pressure of Steady-State Lubrication, Tribology Letters Vol: 51, Issue: 1, July (2013) p.153 – 160.

DOI: 10.1007/s11249-013-0158-2

Google Scholar

[19] F.P. Grando, M. Priest, A.T. Prata, A two-phase flow approach to cavitation modelling in journal bearings, Tribology Letters, Vol: 21, Issue: 3, March (2006), p.233 – 244.

DOI: 10.1007/s11249-006-9027-6

Google Scholar

[20] B. Bhushan, Introduction to Tribology, John Wiley & Sons, (2002).

Google Scholar

[21] B.A. Gordeev, S.N. Okhulkov, et al. Long-term sealing loss of hydraulic bearings, Russian Engineering Research, Vol: 31, Issue: 7, July (2011), p.647 – 650.

DOI: 10.3103/s1068798x11070070

Google Scholar

[22] K. Steller, On material sensitivity to the change of cavitation conditions, 6th Int. Conf. on Erosion by Liquid and Solid Impact ELSI VI, (1983), Paper 6.

Google Scholar

[23] G.A. Schmitt, W. Buecken, R. Fanebust, Modeling microturbulences at surface imperfections as related to flow-induced localized corrosion, Corrosion. 48 (1992) 431–440.

DOI: 10.5006/1.3315957

Google Scholar

[24] O.I. Balits'kyi, J. Chmiel, P. Krause, J. Niekrasz, M. Maciąg, The role of hydrogen in cavitation fracture of steel 45 in lubricants, Materials Science, nr 5/ (2009), pp.651-654.

DOI: 10.1007/s11003-010-9227-y

Google Scholar

[25] J. Chmiel, E. Łunarska, Effect of cavitation on absorption and transport of hydrogen in iron. Solid State Phenomena, 183 (2012) pp.25-30.

DOI: 10.4028/www.scientific.net/ssp.183.25

Google Scholar

[26] J. Chmiel, E. Łunarska, Role of Hydrogen in Cavitation Degradation of Iron in Water Solutions, Solid State Phenomena Vol. 225 (2015) p.59 – 64.

DOI: 10.4028/www.scientific.net/ssp.225.59

Google Scholar

[27] E. Lunarska, O. Chernyayeva, Effect of the self-induced strain on the hydrogen permeation through Al, Intern. J. Hydrogen Energy, 31 (2006) 237-246.

DOI: 10.1016/j.ijhydene.2005.04.052

Google Scholar

[28] J. O'M. Bockris, P.K. Subramanyan, Hydrogen embrittlement and hydrogen traps, J. Electrochem. Soc. 118 ( 1971) 1114-1121.

DOI: 10.1149/1.2408257

Google Scholar

[29] M. Arora, C. -D. Ohl, K. Mørch, Cavitation Inception on Microparticles: A Self-Propelled Particle Accelerator, Phys. Rev. Lett. 92 (2004) 174501.

DOI: 10.1103/physrevlett.92.174501

Google Scholar

[30] Hoon Choa Sung: Tribological characteristics of various surface coatings for rotary compressor vane, Wear, 221(2), 1998, s. 77-85.

DOI: 10.1016/s0043-1648(98)00244-0

Google Scholar