The Influence of Hybrid Material Parameters in Socked-pin Connection on the Value of Opening Force

Article Preview

Abstract:

Different types of techniques are used in joining of aircraft structures. The classical solutions are mechanical or bonding joining. A prospective alternative to the currently used connections (e.g. mechanical, adhesive and hybrid ones) is a socket - pin connection type. Generally, they are purely mechanical joints. Depending on the shape, they have different commercial names such as: Interlock, Snaplock, Snapfit Gridlock. The idea of these connections relies on the fact, that between the socket and the pin we need a suitable interference fit or specially formed clip to carry the load. The advantages of this type of connection of different structural parts is very fast assembly after pressing joined parts together. The use of socket - pin connection eliminates the presence of the human error and reduces production costs as an individual connection is made by CNC machine tools.The paper presents an analysis of the influence of a several technological problems concerning the socket and the pin manufacturing, on the value of force required for the joint connection and disconnection. A number of numerical simulations was made in ABAQUS program to examine the effect of such parameters as: the presence of interference fit, the use of spherical latches, the use of different rigidity in the shaft by making cuts with variable width and length, the use of different angles of inclination of the working part of the slot.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 254)

Pages:

1-7

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Birman, L.V. Bryd, Modelling and Analysis of Functionally Graded Materials and Structures. Appl. Mech. Rev. 60 (2007) 195-216.

Google Scholar

[2] T. Sadowski, S. Ataya, K. Nakonieczny, Thermal analysis of layered FGM cylindrical plates subjected to sudden cooling process at one side – comparison of two applied methods for problem solution, Comp. Mater. Sci. 45 (2009) 624-632.

DOI: 10.1016/j.commatsci.2008.07.011

Google Scholar

[3] K. Nakonieczny, T. Sadowski, Modelling of thermal shock in composite material using a meshfree FEM, Comp. Mater. Sci. 44 (2009) 1307-1311.

DOI: 10.1016/j.commatsci.2008.08.019

Google Scholar

[4] T. Sadowski, K. Nakonieczny, Thermal shock response of FGM cylindrical plates with various grading patterns, Comput. Mat. Sci. 43 (2008) 171-178.

DOI: 10.1016/j.commatsci.2007.07.051

Google Scholar

[5] T. Sadowski, A. Neubrand, Estimation of the crack length after thermal shock in FGM strip, Int. J. Fract. 127 (2004) 135-140.

DOI: 10.1023/b:frac.0000035087.34082.88

Google Scholar

[6] V. Petrova, T. Sadowski, Theoretical modeling and analysis of thermal fracture of semi-infinite functionally graded materials with edge cracks, Meccanica 49 (2014) 2603–2615.

DOI: 10.1007/s11012-014-9941-x

Google Scholar

[7] T. Sadowski, S. Hardy, E. Postek, Prediction of the mechanical response of polycrystalline ceramics containing metallic inter-granular layers under uniaxial tension. Comput. Mat. Sci. 34 (2005) 46-63.

DOI: 10.1016/j.commatsci.2004.10.005

Google Scholar

[8] L.A. Gömze, L.N. Gömze, Alumina-based hetero-modulus ceramic composites with extreme dynamic strength – phase transformation of Si3N4 during high speed collision with metallic bodies, Ĕpitöanyag – Journal of Silicate Based and Composite Materials 61 (2009).

DOI: 10.14382/epitoanyag-jsbcm.2009.7

Google Scholar

[9] T. Sadowski, E. Postek, Ch. Denis, Stress distribution due to discontinuities in polycrystalline ceramics containing metallic inter-granular layers. Comput. Mat. Sci. 39 (2007) 230-236.

DOI: 10.1016/j.commatsci.2006.03.022

Google Scholar

[10] E. Postek, T. Sadowski, Assessing the Influence of Porosity in the Deformation of Metal-Ceramic Composites, Composite Interfaces 18 (2011) 57-76.

DOI: 10.1163/092764410x554049

Google Scholar

[11] T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression, Comp. Mater. Sci. 43 (2008) 75-81.

DOI: 10.1016/j.commatsci.2007.07.041

Google Scholar

[12] T. Sadowski, P. Golewski, Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC), Comp. Mater. Sci. 50 (2011) 1326-1335.

DOI: 10.1016/j.commatsci.2010.05.032

Google Scholar

[13] T. Sadowski, P. Golewski, The influence of quantity and distribution of cooling channels of  turbine elements on level of stresses in the protective layer TBC and the efficiency of cooling, Comp. Mater. Sci. 52 (2012) 293-297.

DOI: 10.1016/j.commatsci.2011.02.027

Google Scholar

[14] T. Sadowski, P. Golewski, Detection and numerical analysis of the most efforted places in turbine blades under real working conditions, Comp. Mater. Sci. 64 (2012) 285-288.

DOI: 10.1016/j.commatsci.2012.02.048

Google Scholar

[15] A.V. Pocius, Adhesion and adhesives technology, Hasner, New York (1997).

Google Scholar

[16] R.D. Adams, J. Comyn, W.C. Wake, Structural adhesive joints in engineering. 2nd ed. Chapman&Hall, London (1997).

Google Scholar

[17] L. F. M. da Silva, A. Öchsner (Eds), Modelling of adhesively bonded joints, Springer (2008).

Google Scholar

[18] L.F.M. da Silva, P.J.C. das Neves, R.D. Adams, J.K. Spelt, Analytical models of adhesively bonded joints – Part I: Literature survey, Int. J. Adhes. & Adhes. 29 (2009) 319-330.

DOI: 10.1016/j.ijadhadh.2008.06.005

Google Scholar

[19] L.F.M. da Silva, P.J.C. das Neves, R.D. Adams, J.K. Spelt, Analytical models of adhesively bonded joints – Part II: Comparative study, Int. J. Adhes. & Adhes. 29 (2009) 331-341.

DOI: 10.1016/j.ijadhadh.2008.06.007

Google Scholar

[20] L. F. M. da Silva, A. Öchsner, R. D. Adams, Handbook of Adhesion Technology, Springer (2011).

Google Scholar

[21] L. F. M. da Silva, A. Öchsner, A. Pirondi (Eds), Hybrid adhesive joints, Springer (2011).

Google Scholar

[22] T. Sadowski, M. Kneć, P. Golewski, Experimental investigations and numerical modelling of steel adhesive joints reinforced by rivets, Int. J. Adh&Adhes 30 (2010) 338-346.

DOI: 10.1016/j.ijadhadh.2009.11.004

Google Scholar

[23] T. Sadowski, P. Golewski, E. Zarzeka-Raczkowska, Damage and failure processes of hybrid joints: adhesive bonded aluminium plates reinforced by rivets, Comp. Mater. Sci. 50 (2011) 1256-1262.

DOI: 10.1016/j.commatsci.2010.06.022

Google Scholar

[24] T. Sadowski, M. Kneć, P. Golewski, Spot welding-adhesive joints: modelling and testing, J. Adhesion 90 (2014) 346-364 (2014).

DOI: 10.1080/00218464.2013.766599

Google Scholar

[25] T. Sadowski, P. Golewski, M. Kneć, Experimental investigation and numerical modelling of spot welding–adhesive joints response, Composite Structures 112 (2014) 66–77.

DOI: 10.1016/j.compstruct.2014.01.008

Google Scholar

[26] P. Pandurangan, G.D. Buckner, Assessment of damage detection methods in GRID-LOCK structures, Mechanical Systems and Signal Processing 21 (2007) 2185–2197.

DOI: 10.1016/j.ymssp.2006.10.004

Google Scholar

[27] Y.H. Chen, C.C. Lan, Design of a constant-force snap-fit mechanism for minimal mating uncertainty, Mechanism and Machine Theory 55 (2012) 34–50.

DOI: 10.1016/j.mechmachtheory.2012.04.006

Google Scholar

[28] J.M. Brock, P.K. Wright, Design tool for injection molded snap fits in consumer products, Journal of Manufacturing Systems 21 (2012) 32-39.

DOI: 10.1016/s0278-6125(02)90010-5

Google Scholar

[29] L. Rusli, A. Luscher, C. Sommerach, Force and tactile feedback in preloaded cantilever snap-fits under manual assembly International Journal of Industrial Ergonomics 40 (2010) 618-628.

DOI: 10.1016/j.ergon.2010.05.005

Google Scholar

[30] H. Li, K. Jin, B. He, Y. Chen, Hollow structure snap-fit design embedded with shape memory polymer sweet, CIRP Annals - Manufacturing Technology 61 (2012) 31–34.

DOI: 10.1016/j.cirp.2012.03.110

Google Scholar

[31] B. He, H. Li, K. Jin, Shape memory polymer actuated hollow snap-fit design analysis, Materials and Design 47 (2013) 539–550.

DOI: 10.1016/j.matdes.2012.12.038

Google Scholar

[32] J. Carrell, D. Tate, S. Wang, H.C. Hang, Shape memory polymer snap-fits for active disassembly, Journal of Cleaner Production 19 (2011) 2066-(2074).

DOI: 10.1016/j.jclepro.2011.06.027

Google Scholar

[33] V. Burlayenko, T. Sadowski, Analysis of structural performance of aluminium sandwich plates with foam-filled hexagonal foam, Comp. Mater. Sci, 45 (2009) 658-662.

DOI: 10.1016/j.commatsci.2008.08.018

Google Scholar

[34] L. Marsavina, T. Sadowski, Fracture parameters at bi-material ceramic interfaces under bi-axial state of stress. Comp. Mater. Sci, 45, (2009) 693-697.

DOI: 10.1016/j.commatsci.2008.06.005

Google Scholar

[35] T. Sadowski, L. Marsavina, N. Peride, E. -M. Craciun, Cracks propagation and interaction in an orthotropic elastic material: analytical and numerical methods, Comput. Mat. Sci. 46 (2009) 687-693.

DOI: 10.1016/j.commatsci.2009.06.006

Google Scholar

[36] L. Marsavina, T. Sadowski, Kinked cracks at a bi-material ceramic interface – numerical determination of fracture parameters. Comput. Mat. Sci, 44 (2009) 941-950.

DOI: 10.1016/j.commatsci.2008.07.005

Google Scholar

[37] V. Burlayenko, T. Sadowski, Nonlinear dynamic analysis of harmonically excited debonded sandwich plates using finite element modeling, Composite Structures 108 (2014) 354-366.

DOI: 10.1016/j.compstruct.2013.09.042

Google Scholar

[38] V. Burlayenko, T. Sadowski, Transient dynamic response of debonded sandwich plates predicted with the finite element, Meccanica 49 (2014) 2617-2633.

DOI: 10.1007/s11012-014-9924-y

Google Scholar

[39] T. Sadowski, L. Marsavina, Multiscale modelling of Two-phase Ceramic Matrix Composites, Comput. Mat. Sci. 50 (2011) 1336-1346.

DOI: 10.1016/j.commatsci.2010.04.011

Google Scholar

[40] G. Golewski, P. Golewski, T. Sadowski, Numerical modeling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method, Comput. Mat. Sci. 62 (2012) 75-78.

DOI: 10.1016/j.commatsci.2012.05.009

Google Scholar

[41] G. Golewski, T. Sadowski, An analysis of shear fracture toughness KIIc and mictrostructure in concrete containing fly-ash, Construction and Building Materials 51 (2014) 207-214.

DOI: 10.1016/j.conbuildmat.2013.10.044

Google Scholar

[42] T. Sadowski, B. Pankowski, Numerical modelling of two-phase ceramic composite response under uniaxial loading, Composite Structures 143 (2016) 388-394.

DOI: 10.1016/j.compstruct.2016.02.022

Google Scholar

[43] V.N. Burlayenko, H. Altenbach, T. Sadowski, An evaluation of displacement-based finite element models used for free vibration analysis of homogeneous and composite plates, Journal of Sound and Vibration 358 (2015) 152-175.

DOI: 10.1016/j.jsv.2015.08.010

Google Scholar

[44] V.N. Burlayenko, H. Altenbach, T. Sadowski, S.D. Dimitrova, Computational simulations of thermal shock cracking by the virtual crack closure technique in a functionally graded plate, Computational Materials Science 116 (2016) 11-21.

DOI: 10.1016/j.commatsci.2015.08.038

Google Scholar

[45] T. Sadowski, E. M. Craciun, A. Rabaea, L. Marsavina, Mathematical modeling of three equal collinear cracks in an orthotropic solid, Meccanica 51 (2016) 329-339.

DOI: 10.1007/s11012-015-0254-5

Google Scholar

[46] I. V. Ivanov, D. S. Velchev, N. G. Georgiev, I. D. Ivanov, T. Sadowski, A plate finite element for modelling of triplex laminated glass and comparison with other computational models, Meccanica 51 (2016) 341-358.

DOI: 10.1007/s11012-015-0275-0

Google Scholar

[47] J. Bieniaś, H. Dębski H., B. Surowska B., T. Sadowski, Analysis of microstructure damage in carbon/epoxy composites using FEM, Comput. Mat. Sci. 64 (2012) 168-172.

DOI: 10.1016/j.commatsci.2012.03.033

Google Scholar

[48] S. Lenci, F. Clementi, T. Sadowski, Experimental determination of the fracture properties of unfired dry earth, Engineering Fracture Mechanics 87 (2012) 62-72.

DOI: 10.1016/j.engfracmech.2012.03.005

Google Scholar

[49] S. Lenci, Q. Piattoni, F. Clementi, T. Sadowski, An experimental study on damage evolution of unfired dry earth under compression, Int. J. of Fracture 172 (2011) 193-200.

DOI: 10.1007/s10704-011-9651-5

Google Scholar

[50] M. Birsan, T. Sadowski, D. Pietras, Thermoelastic deformations of cylindrical multi-layered shells using a direct approach, Journal of Thermal Stress 36 (2013) 1-38.

DOI: 10.1080/01495739.2013.764802

Google Scholar

[51] T. Sadowski, M. Birsan, D. Pietras, Numerical analysis of multilayered and FGM structural elements under mechanical and thermal loads. Comparison of the finite elements and analytical models, Arch. of Civil and Mechanical Eng. 15 (2015).

DOI: 10.1016/j.acme.2014.09.004

Google Scholar