[1]
T. Sadowski, G. L. Golewski, Effect of aggregate kind and graining on modeling of plain concrete under compression, Comput. Mater. Sci. 43 (2008) 119–126.
DOI: 10.1016/j.commatsci.2007.07.037
Google Scholar
[2]
M. Di Prisco, L. Ferrara, F. Meftah, J. Pamin, R. De Borst, J. Mazars, J. M. Reynouard, Mixed mode fracture in plain and reinforced concrete: some results on benchmark test, Int. J. of Frac. 103 (2000) 127–148.
DOI: 10.1023/a:1007613001402
Google Scholar
[3]
K. W. Lo, K. Zhong, T. Tamilselvan, K. C. G. Ong, T. H. Wee, Mixed mode I-III fracture testing of cement mortar, ACI Mater. J. 99 (2002) 435–440.
Google Scholar
[4]
L. Song, S. M. Huang, S. C. Yang, Experimental investigation on criterion of three-dimensional mixed-mode fracture for concrete, Cem. Concr. Res. 34 (2004) 913–916.
DOI: 10.1016/j.cemconres.2003.10.013
Google Scholar
[5]
B. H. Bharatkumar, B. K. Raghuprasad, D. S. Ramachandramurthy, R. Narayanan, S. Gopalakrishnan, Effect of fly ash and slag on the fracture characteristics of high performance concrete, Mater. Struct. 38 (2005) 63–72.
DOI: 10.1007/bf02480576
Google Scholar
[6]
L. Lam, Y. L. Wong, C. S. Poon, Effect of fly ash and silica fume on compressive and fracture behaviors of concrete, Cem Concr. Res. 28 (1998) 271–283.
DOI: 10.1016/s0008-8846(97)00269-x
Google Scholar
[7]
W. C. Tang, T. Y. Lo, W. K. Chan, Fracture properties of normal and lightweight high-strength concrete, Mag. Concr. Res. 60 (2008) 237–244.
DOI: 10.1680/macr.2008.60.4.237
Google Scholar
[8]
G. L. Golewski, T. Sadowski, An analysis of shear fracture toughness and microstructure in concretes containing fly-ash, Constr. Build. Mater. 51 (2014) 207–214.
DOI: 10.1016/j.conbuildmat.2013.10.044
Google Scholar
[9]
G. L. Golewski, T. Sadowski, Experimental investigation and numerical modelling fracture processes under Mode II in concrete composites containing fly-ash additive at early age, Sol. Stat. Phenom. 188 (2012) 158–163.
DOI: 10.4028/www.scientific.net/ssp.188.158
Google Scholar
[10]
G. L. Golewski, P. Golewski, T. Sadowski, Numerical modeling crack propagation under Mode II fracture in plain concretes containing siliceous fly ash additive using XFEM method, Comput. Mater. Sci. 62 (2012) 75–78.
DOI: 10.1016/j.commatsci.2012.05.009
Google Scholar
[11]
Z. P. Bazant, P. C. Prat, Measurement of mode III fracture energy of concrete, Nucl. Eng. Des. 106, (1988) 1–8.
Google Scholar
[12]
Z. P. Bazant, P. C. Prat, M. R. Tabbara, Antiplane shear fracture tests (Mode III), ACI Mater. J. 87 (1990) 12–19.
DOI: 10.14359/2302
Google Scholar
[13]
A. V. Lopes, S. M. R. Lopes, R. N. F. do Carmo, Stiffness of reinforced concrete slabs subjected to torsion, Mater. Struct. 47 (2014) 227–38.
DOI: 10.1617/s11527-013-0057-x
Google Scholar
[14]
M. Kamiński, W. Pawlak, Load capacity and stiffness of angular cross section reinforced concrete beams under torsion, Arch. Civ. Mech. Eng. 11 (2011) 885–903.
DOI: 10.1016/s1644-9665(12)60085-5
Google Scholar
[15]
A. Deifalla, A. Ghobarah, Behavior and analysis of inverted T-shaped RC beams under shear and torsion, Eng. Struct. 68 (2014) 57–70.
DOI: 10.1016/j.engstruct.2014.02.011
Google Scholar
[16]
T. C. Hsu, Torsion of reinforced concrete, Van Nostrand Reinhold Company, New York, (1984).
Google Scholar
[17]
G. L. Golewski, Studies of natural radioactivity of concrete with siliceous fly ash addition, Cement-Wapno-Beton [Cement-Lime-Concrete] 2 (2015) 106–114.
Google Scholar
[18]
J. J. -A. Wang, K. C. Liu, D. A. Naus, A new test method for determining the fracture toughness of concrete materials, Cem Concr. Res. 40 (2010) 497–499.
DOI: 10.1016/j.cemconres.2009.09.019
Google Scholar
[19]
D. P. Miannay, Fracture mechanics, Springer-Verlag, New York, (1998).
Google Scholar
[20]
Z. Sekulic, S. Popov, M. Duricic, A. Rosic, Mechanical activation of cement with addition of fly ash, Mater. Lett. 39 (1999) 115–121.
Google Scholar
[21]
Z. Jing, F. Jin, T. Hashida, N. Yamasaki, E. H. Ishida, Influence of addition of coal fly ash and quartz on hydrothermal solidification of blast furnace slag, Cem. Concr. Res. 38 (2008) 976–982.
DOI: 10.1016/j.cemconres.2008.01.017
Google Scholar
[22]
Z. -J. Wang, Q. Wang, Y. -F. Wei, Effects on mineral admixtures and superplasticizers on micro-hardness of aggregate-paste interface in cement concrete, J. Shanghai Jiaotong University (Science) 17 (2012) 629–634.
DOI: 10.1007/s12204-012-1335-4
Google Scholar
[23]
F. A. Sabet, N. A. Libre, M. Shekarchi, Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash, Constr. Build. Mater. 44 (2013) 175–184.
DOI: 10.1016/j.conbuildmat.2013.02.069
Google Scholar
[24]
A. Nadeem, S. A. Memon, T. Y. Lo, The performance of fly ash and metakaolin concrete at elevated temperatures, Constr. Build. Mater. 62 (2014) 67–76.
DOI: 10.1016/j.conbuildmat.2014.02.073
Google Scholar
[25]
T. Sadowski, Modelling of semi-brittle ceramic behaviour under compression state, Mech. Mater. 18 (1994) 1–16.
DOI: 10.1016/0167-6636(94)90002-7
Google Scholar
[26]
G. Golewski, T. Sadowski, Fracture toughness at shear (mode II) of concretes made of natural and broken aggregates, In: The Eight International Symposium on Brittle Matrix Composites, 2006 537–546.
DOI: 10.1533/9780857093080.537
Google Scholar
[27]
G. Golewski, T. Sadowski, Rola kruszywa grubego w procesie destrukcji kompozytów betonowych poddanych obciążeniom doraźnym [The role of coarse aggregate in failure process of concrete composites subjected short-time loads], IZT, Lublin, 2008 (in Polish).
Google Scholar
[28]
T. Sadowski, L. Marsavina, Multiscale modelling of two-phase ceramic matrix composites, Comput. Mat. Sci. 50 (2011) 1336–1346.
DOI: 10.1016/j.commatsci.2010.04.011
Google Scholar
[29]
T. Sadowski, Gradual degradation in two-phase ceramic composites under compression, Comput. Mat. Sci. 64 (2012) 209–211.
DOI: 10.1016/j.commatsci.2012.01.034
Google Scholar
[30]
E. Postek, T. Sadowski, Assessing the influence of porosity in the deformation of metal-ceramic composites, Comp. Inter. 18 (2011) 57–76.
DOI: 10.1163/092764410x554049
Google Scholar
[31]
T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression, Comput. Mater. Sci. 43 (2008) 75–81.
DOI: 10.1016/j.commatsci.2007.07.041
Google Scholar
[32]
M. Birsan, T. Sadowski, D. Pietras, Thermoelastic deformations of cylindrical multi-layered shells using a direct approach, J. Ther. Str. 36 (2013) 1–38.
DOI: 10.1080/01495739.2013.764802
Google Scholar
[33]
T. Sadowski, M. Birsan, D. Pietras, Numerical analysis of multilayered and FGM structural elements under mechanical and thermal loads. Comparison of the finite elements and analytical models, Arch. Civ. Mech. Eng. 15 (2015) 1180–1192.
DOI: 10.1016/j.acme.2014.09.004
Google Scholar
[34]
T. Sadowski, B. Pankowski, Numerical modelling of two-phase ceramic composite response under uniaxial loading, Comp. Struct. 143 (2016) 388–394.
DOI: 10.1016/j.compstruct.2016.02.022
Google Scholar
[35]
J. Bieniaś, H. Dębski H., B. Surowska B., T. Sadowski, Analysis of microstructure damage in carbon/epoxy composites using FEM, Comput. Mat. Sci. 64 (2012) 168-172.
DOI: 10.1016/j.commatsci.2012.03.033
Google Scholar
[36]
T. Sadowski, P. Golewski, Detection and numerical analysis of the most efforted places in turbine blades under real working conditions, Comp. Mater. Sci. 64 (2012) 285-288.
DOI: 10.1016/j.commatsci.2012.02.048
Google Scholar