A Study of Mode III Fracture Toughness in Young and Mature Concrete with Fly Ash Additive

Article Preview

Abstract:

A description of processes of formation and propagation of cracks in material requires the knowledge of all fracture mechanics parameters, i.e.: KIc, KIIc and KIIIc. In this study a new testing method and estimation of the fracture toughness in Mode III (antiplane shear) of concretes containing: 0, 20 and 30% volume content of the class F fly ash (FA) was proposed. Fracture toughness tests were performed on axial torsion machine MTS 809 Axial/Torsional Test System. The studies examined effect of FA additive on the parameter KIIIc. In order to determine the fracture toughness KIIIc a special device was made. Experimental investigation under third mode fracture was carried out both in young and mature concrete composites (after: 3, 7, 28, 90, 180 and 365 days). 20% addition of FA as well as a 30% addition of FA causes a reduction in fracture toughness of young concrete. After 28 days of couring a significant increase of the KIIIc was noticed in composites with a 20% additive of FA while concrete mixtures with a higher additive of FA still had lower analyzed fracture mechanics parameter.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 254)

Pages:

120-125

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Sadowski, G. L. Golewski, Effect of aggregate kind and graining on modeling of plain concrete under compression, Comput. Mater. Sci. 43 (2008) 119–126.

DOI: 10.1016/j.commatsci.2007.07.037

Google Scholar

[2] M. Di Prisco, L. Ferrara, F. Meftah, J. Pamin, R. De Borst, J. Mazars, J. M. Reynouard, Mixed mode fracture in plain and reinforced concrete: some results on benchmark test, Int. J. of Frac. 103 (2000) 127–148.

DOI: 10.1023/a:1007613001402

Google Scholar

[3] K. W. Lo, K. Zhong, T. Tamilselvan, K. C. G. Ong, T. H. Wee, Mixed mode I-III fracture testing of cement mortar, ACI Mater. J. 99 (2002) 435–440.

Google Scholar

[4] L. Song, S. M. Huang, S. C. Yang, Experimental investigation on criterion of three-dimensional mixed-mode fracture for concrete, Cem. Concr. Res. 34 (2004) 913–916.

DOI: 10.1016/j.cemconres.2003.10.013

Google Scholar

[5] B. H. Bharatkumar, B. K. Raghuprasad, D. S. Ramachandramurthy, R. Narayanan, S. Gopalakrishnan, Effect of fly ash and slag on the fracture characteristics of high performance concrete, Mater. Struct. 38 (2005) 63–72.

DOI: 10.1007/bf02480576

Google Scholar

[6] L. Lam, Y. L. Wong, C. S. Poon, Effect of fly ash and silica fume on compressive and fracture behaviors of concrete, Cem Concr. Res. 28 (1998) 271–283.

DOI: 10.1016/s0008-8846(97)00269-x

Google Scholar

[7] W. C. Tang, T. Y. Lo, W. K. Chan, Fracture properties of normal and lightweight high-strength concrete, Mag. Concr. Res. 60 (2008) 237–244.

DOI: 10.1680/macr.2008.60.4.237

Google Scholar

[8] G. L. Golewski, T. Sadowski, An analysis of shear fracture toughness and microstructure in concretes containing fly-ash, Constr. Build. Mater. 51 (2014) 207–214.

DOI: 10.1016/j.conbuildmat.2013.10.044

Google Scholar

[9] G. L. Golewski, T. Sadowski, Experimental investigation and numerical modelling fracture processes under Mode II in concrete composites containing fly-ash additive at early age, Sol. Stat. Phenom. 188 (2012) 158–163.

DOI: 10.4028/www.scientific.net/ssp.188.158

Google Scholar

[10] G. L. Golewski, P. Golewski, T. Sadowski, Numerical modeling crack propagation under Mode II fracture in plain concretes containing siliceous fly ash additive using XFEM method, Comput. Mater. Sci. 62 (2012) 75–78.

DOI: 10.1016/j.commatsci.2012.05.009

Google Scholar

[11] Z. P. Bazant, P. C. Prat, Measurement of mode III fracture energy of concrete, Nucl. Eng. Des. 106, (1988) 1–8.

Google Scholar

[12] Z. P. Bazant, P. C. Prat, M. R. Tabbara, Antiplane shear fracture tests (Mode III), ACI Mater. J. 87 (1990) 12–19.

DOI: 10.14359/2302

Google Scholar

[13] A. V. Lopes, S. M. R. Lopes, R. N. F. do Carmo, Stiffness of reinforced concrete slabs subjected to torsion, Mater. Struct. 47 (2014) 227–38.

DOI: 10.1617/s11527-013-0057-x

Google Scholar

[14] M. Kamiński, W. Pawlak, Load capacity and stiffness of angular cross section reinforced concrete beams under torsion, Arch. Civ. Mech. Eng. 11 (2011) 885–903.

DOI: 10.1016/s1644-9665(12)60085-5

Google Scholar

[15] A. Deifalla, A. Ghobarah, Behavior and analysis of inverted T-shaped RC beams under shear and torsion, Eng. Struct. 68 (2014) 57–70.

DOI: 10.1016/j.engstruct.2014.02.011

Google Scholar

[16] T. C. Hsu, Torsion of reinforced concrete, Van Nostrand Reinhold Company, New York, (1984).

Google Scholar

[17] G. L. Golewski, Studies of natural radioactivity of concrete with siliceous fly ash addition, Cement-Wapno-Beton [Cement-Lime-Concrete] 2 (2015) 106–114.

Google Scholar

[18] J. J. -A. Wang, K. C. Liu, D. A. Naus, A new test method for determining the fracture toughness of concrete materials, Cem Concr. Res. 40 (2010) 497–499.

DOI: 10.1016/j.cemconres.2009.09.019

Google Scholar

[19] D. P. Miannay, Fracture mechanics, Springer-Verlag, New York, (1998).

Google Scholar

[20] Z. Sekulic, S. Popov, M. Duricic, A. Rosic, Mechanical activation of cement with addition of fly ash, Mater. Lett. 39 (1999) 115–121.

Google Scholar

[21] Z. Jing, F. Jin, T. Hashida, N. Yamasaki, E. H. Ishida, Influence of addition of coal fly ash and quartz on hydrothermal solidification of blast furnace slag, Cem. Concr. Res. 38 (2008) 976–982.

DOI: 10.1016/j.cemconres.2008.01.017

Google Scholar

[22] Z. -J. Wang, Q. Wang, Y. -F. Wei, Effects on mineral admixtures and superplasticizers on micro-hardness of aggregate-paste interface in cement concrete, J. Shanghai Jiaotong University (Science) 17 (2012) 629–634.

DOI: 10.1007/s12204-012-1335-4

Google Scholar

[23] F. A. Sabet, N. A. Libre, M. Shekarchi, Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash, Constr. Build. Mater. 44 (2013) 175–184.

DOI: 10.1016/j.conbuildmat.2013.02.069

Google Scholar

[24] A. Nadeem, S. A. Memon, T. Y. Lo, The performance of fly ash and metakaolin concrete at elevated temperatures, Constr. Build. Mater. 62 (2014) 67–76.

DOI: 10.1016/j.conbuildmat.2014.02.073

Google Scholar

[25] T. Sadowski, Modelling of semi-brittle ceramic behaviour under compression state, Mech. Mater. 18 (1994) 1–16.

DOI: 10.1016/0167-6636(94)90002-7

Google Scholar

[26] G. Golewski, T. Sadowski, Fracture toughness at shear (mode II) of concretes made of natural and broken aggregates, In: The Eight International Symposium on Brittle Matrix Composites, 2006 537–546.

DOI: 10.1533/9780857093080.537

Google Scholar

[27] G. Golewski, T. Sadowski, Rola kruszywa grubego w procesie destrukcji kompozytów betonowych poddanych obciążeniom doraźnym [The role of coarse aggregate in failure process of concrete composites subjected short-time loads], IZT, Lublin, 2008 (in Polish).

Google Scholar

[28] T. Sadowski, L. Marsavina, Multiscale modelling of two-phase ceramic matrix composites, Comput. Mat. Sci. 50 (2011) 1336–1346.

DOI: 10.1016/j.commatsci.2010.04.011

Google Scholar

[29] T. Sadowski, Gradual degradation in two-phase ceramic composites under compression, Comput. Mat. Sci. 64 (2012) 209–211.

DOI: 10.1016/j.commatsci.2012.01.034

Google Scholar

[30] E. Postek, T. Sadowski, Assessing the influence of porosity in the deformation of metal-ceramic composites, Comp. Inter. 18 (2011) 57–76.

DOI: 10.1163/092764410x554049

Google Scholar

[31] T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression, Comput. Mater. Sci. 43 (2008) 75–81.

DOI: 10.1016/j.commatsci.2007.07.041

Google Scholar

[32] M. Birsan, T. Sadowski, D. Pietras, Thermoelastic deformations of cylindrical multi-layered shells using a direct approach, J. Ther. Str. 36 (2013) 1–38.

DOI: 10.1080/01495739.2013.764802

Google Scholar

[33] T. Sadowski, M. Birsan, D. Pietras, Numerical analysis of multilayered and FGM structural elements under mechanical and thermal loads. Comparison of the finite elements and analytical models, Arch. Civ. Mech. Eng. 15 (2015) 1180–1192.

DOI: 10.1016/j.acme.2014.09.004

Google Scholar

[34] T. Sadowski, B. Pankowski, Numerical modelling of two-phase ceramic composite response under uniaxial loading, Comp. Struct. 143 (2016) 388–394.

DOI: 10.1016/j.compstruct.2016.02.022

Google Scholar

[35] J. Bieniaś, H. Dębski H., B. Surowska B., T. Sadowski, Analysis of microstructure damage in carbon/epoxy composites using FEM, Comput. Mat. Sci. 64 (2012) 168-172.

DOI: 10.1016/j.commatsci.2012.03.033

Google Scholar

[36] T. Sadowski, P. Golewski, Detection and numerical analysis of the most efforted places in turbine blades under real working conditions, Comp. Mater. Sci. 64 (2012) 285-288.

DOI: 10.1016/j.commatsci.2012.02.048

Google Scholar