[1]
T. Sadowski, P. Golewski, Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC), Comp. Mat. Sci. 50 (2011) 1326–1335.
DOI: 10.1016/j.commatsci.2010.05.032
Google Scholar
[2]
T. Sadowski, P. Golewski, The influence of quantity and distribution of cooling channels of turbine elements on level of stresses in the protective layer TBC and the efficiency of cooling, Comp. Mat. Sci. 52 (2012) 293–297.
DOI: 10.1016/j.commatsci.2011.02.027
Google Scholar
[3]
T. Sadowski, P. Golewski, The Analysis of Heat Transfer and Thermal Stresses in Thermal Barrier Coatings under Exploitation, Def. and Diff. For. 326-328 (2012) 530-535.
DOI: 10.4028/www.scientific.net/ddf.326-328.530
Google Scholar
[4]
T. Sadowski, P. Golewski, Detection and numerical analysis of the most efforted places in turbine blades under real working conditions, Comp. Mat. Sci. 64 (2012) 285–288.
DOI: 10.1016/j.commatsci.2012.02.048
Google Scholar
[5]
T. Sadowski, P. Golewski, Experimental and numerical investigations of TBC behavior after aging, subjected to tension and bending, Sol. Sta. Phen. 216 (2014) 128-133.
DOI: 10.4028/www.scientific.net/ssp.216.128
Google Scholar
[6]
F. Cernuschia, L. Lorenzonia, S. Capelli, C. Guardamagnaa, M. Kargerb, R. Vaßenb, K. Von Niessen, N. Markocsand, J. Menueye, C. Giolli, Solid particle erosion of thermal spray and physical vapour deposition thermal barrier coatings, Wear 271 (2011).
DOI: 10.1016/j.wear.2011.06.013
Google Scholar
[7]
X. Chen, M. Y. He, I. Spitsberg, N. A. Fleck, J. W. Hutchinson, A. G. Evans, Mechanisms governing the high temperature erosion of thermal barrier coatings, Wear 256 (2004) 735–746.
DOI: 10.1016/s0043-1648(03)00446-0
Google Scholar
[8]
X. Chen, J. W. Hutchinson, Particle impact on metal substrates with application to foreign object damage to aircraft engines, Jour. of the Mech. and Phy. of Sol. 50 (2002) 2669–2690.
DOI: 10.1016/s0022-5096(02)00022-4
Google Scholar
[9]
M. W. Crowell, T. A. Schaedler, B. H. Hazel, D. G. Konitzer, R. M. McMeeking, A. G. Evans, Experiments and numerical simulations of single particle foreign object damage-like impacts of thermal barrier coatings, Inter. Jour. of Imp. Eng. 48 (2012).
DOI: 10.1016/j.ijimpeng.2011.10.006
Google Scholar
[10]
J. R. Nicholls, M. J. Deakin, D. S. Rickerby, A comparison between the erosion behaviour of thermal spray and electron beam physical vapour deposition thermal barrier coatings, Wear 233–235 (1999) 352–361.
DOI: 10.1016/s0043-1648(99)00214-8
Google Scholar
[11]
R. J. L. Steenbakker, R. G. Wellman, J. R. Nicholas, Erosion of gadolinia doped EB-PVD TBCs, Surf. Coat. Tech. 201 (2006) 2140–2146.
DOI: 10.1016/j.surfcoat.2006.03.022
Google Scholar
[12]
T. Strangman, D. Raybould, A. Jameel, W. Baker, Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine airfoils, Surf. Coat. Tech. 202 (2007) 658–664.
DOI: 10.1016/j.surfcoat.2007.06.067
Google Scholar
[13]
R. G. Wellman, M. J. Deakin, J. R. Nicholls, The effect of TBC morphology and aging on the erosion rate of EB-PVD TBCs, Trib. Inter. 38 (2005) 798–804.
DOI: 10.1016/j.triboint.2005.02.008
Google Scholar
[14]
R. G. Wellman, J. R. Nicholas, Erosion, corrosion and erosion–corrosion of EB PVD thermal barrier coatings, Trib. Inter. 41 (2008) 657–662.
DOI: 10.1016/j.triboint.2007.10.004
Google Scholar
[15]
X. Chen, R. Wang, N. Yao, A. G. Evans, J. W. Hutchinson, R. W. Bruce, Foreign object damage in a thermal barrier system: mechanisms and Simulations, Mat. Sci. Eng. A 352 (2003) 221-231.
DOI: 10.1016/s0921-5093(02)00905-x
Google Scholar
[16]
S. Masoud Marandi, K. Rahmani, M. Tajdari, Foreign object damage on the leading edge of gas turbine blades, Aero. Sci. Tech. 33 (2014) 65–75.
DOI: 10.1016/j.ast.2014.01.001
Google Scholar
[17]
T. J. Carter, Common failures in gas turbine blades, Eng. Fail. Anal. 12 (2005) 237–247.
Google Scholar
[18]
C. Zhou, N. Wang, H. Xu, Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings, Mat. Sci. Eng. A 452–453 (2007) 569–574.
DOI: 10.1016/j.msea.2006.11.027
Google Scholar
[19]
T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression. Comput. Mat. Sci. 43 (2008) 75-81.
DOI: 10.1016/j.commatsci.2007.07.041
Google Scholar
[20]
T. Sadowski, S. Hardy, E. Postek, Prediction of the mechanical response of polycrystalline ceramics containing metallic inter-granular layers under uniaxial tension. Comput. Mat. Sci. 34 (2005) 46-63.
DOI: 10.1016/j.commatsci.2004.10.005
Google Scholar
[21]
T. Sadowski, S. Hardy, E. Postek, A new model for the time-dependent behaviour of polycrystalline ceramic materials with metallic inter-granular layers under tension. Mat. Sci. Eng. A 424 (2006) 230-238.
DOI: 10.1016/j.msea.2006.03.004
Google Scholar
[22]
T. Sadowski, E. Postek, C. Denis, Stress distribution due to discontinuities in polycrystalline ceramics containing metallic inter-granular layers. Comput. Mat. Sci. 39 (2007) 230-236.
DOI: 10.1016/j.commatsci.2006.03.022
Google Scholar
[23]
T. Sadowski, L. Marsavina, Multiscale modelling of two-phase ceramic matrix composites Comput. Mat. Sci. 50 (2011) 1336-1346.
DOI: 10.1016/j.commatsci.2010.04.011
Google Scholar
[24]
T. Sadowski, Gradual degradation of two-phase ceramic composites under compression, Comput. Mat. Sci. 64 (2012) 209-211.
DOI: 10.1016/j.commatsci.2012.01.034
Google Scholar
[25]
E. Postek, T. Sadowski, Assessing the Influence of Porosity in the Deformation of Metal-Ceramic Composites, Comp. Interfaces 18 (2011) 57-76.
DOI: 10.1163/092764410x554049
Google Scholar
[26]
T. Sadowski, A. Neubrand, Estimation of the crack length after thermal shock in FGM strip. Int. J. Fract. 127 (2004) 135-140.
DOI: 10.1023/b:frac.0000035087.34082.88
Google Scholar
[27]
V. Petrova, T. Sadowski, Theoretical modeling and analysis of thermal fracture of semi-infinite functionally graded materials with edge cracks, Meccanica 49 (2014) 2617-2633.
DOI: 10.1007/s11012-014-9941-x
Google Scholar
[28]
T. Sadowski, K. Nakonieczny, Thermal shock response of FGM cylindrical plates with various grading patterns. Comput. Mat. Sci. 43 (2008) 171-178.
DOI: 10.1016/j.commatsci.2007.07.051
Google Scholar
[29]
K. Nakonieczny, T. Sadowski, Modelling of thermal shock in composite material using a meshfree FEM. Comp. Mater. Sci. 44 (2009) 1307-1311.
DOI: 10.1016/j.commatsci.2008.08.019
Google Scholar
[30]
T. Sadowski, S. Ataya, K. Nakonieczny, Thermal analysis of layered FGM cylindrical plates subjected to sudden cooling process at one side – comparison of two applied methods for problem solution. Comp. Mater. Sci. 45 (2009) 624-632.
DOI: 10.1016/j.commatsci.2008.07.011
Google Scholar
[31]
M. Birsan, T. Sadowski, D. Pietras, Thermoelastic deformations of cylindrical multi-layered shells using a direct approach, Journal of Thermal Stress 36 (2013) 1-38.
DOI: 10.1080/01495739.2013.764802
Google Scholar
[32]
T. Sadowski, M. Birsan, D. Pietras, Numerical analysis of multilayered and FGM structural elements under mechanical and thermal loads. Comparison of the finite elements and analytical models, Arch. of Civil and Mechanical Eng. 15 (2015).
DOI: 10.1016/j.acme.2014.09.004
Google Scholar
[33]
G. Golewski, P. Golewski, T. Sadowski, Numerical modeling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method, Comput. Mat. Sci. 62 (2012) 75-78.
DOI: 10.1016/j.commatsci.2012.05.009
Google Scholar
[34]
T. Sadowski, B. Pankowski, Numerical modelling of two-phase ceramic composite response under uniaxial loading, Composite Structures 143 (2016) 388-394.
DOI: 10.1016/j.compstruct.2016.02.022
Google Scholar