Numerical and Experimental Analysis of Foreign Objects Impact into the Surface with TBC Coating

Article Preview

Abstract:

While the plane is maneuvering before start or landing, some solid particles (e.g. sand, dust, soil) can be sucked into an engine with the air. Their vast majority is stopped on the compressor blades, but the smaller ones are able to get into a hot part of the engine and cause erosion. Erosion is widely recognized as the second mechanism, after corrosion that reduces the TBC coating thickness. In many cases, erosion can completely remove it. Furthermore, TBC coatings are more susceptible to erosion due to their porous structure than full dense ceramic materials. In order to investigate the phenomenon of particles impact with diameter of 4mm, the pneumatic driven laboratory work station was built. The work station has an adjustable pressure, so that the foreign object may possess different kinetic energies. The pressure can be read on a digital pressure gauge and the shot release is done electrically. In addition, the work station has a universal cross table that provides precise positioning of the sample so as to be able to perform a dozen or so impacts in predetermined distance intervals. However, the most important component is the velocity measurement system which is used to determine the impact energy. The paper presents the results of 11 impacts made with different energies. The effect of complete destruction of the ceramic layer as well as indents without visible damage was achieved. Numerical simulations allowed to define the zones of stress influence of the individual indents. The brittle cracking model in Abaqus allowed the virtual representation of damage due to impact load.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 254)

Pages:

224-230

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Sadowski, P. Golewski, Multidisciplinary analysis of the operational temperature increase of turbine blades in combustion engines by application of the ceramic thermal barrier coatings (TBC), Comp. Mat. Sci. 50 (2011) 1326–1335.

DOI: 10.1016/j.commatsci.2010.05.032

Google Scholar

[2] T. Sadowski, P. Golewski, The influence of quantity and distribution of cooling channels of turbine elements on level of stresses in the protective layer TBC and the efficiency of cooling, Comp. Mat. Sci. 52 (2012) 293–297.

DOI: 10.1016/j.commatsci.2011.02.027

Google Scholar

[3] T. Sadowski, P. Golewski, The Analysis of Heat Transfer and Thermal Stresses in Thermal Barrier Coatings under Exploitation, Def. and Diff. For. 326-328 (2012) 530-535.

DOI: 10.4028/www.scientific.net/ddf.326-328.530

Google Scholar

[4] T. Sadowski, P. Golewski, Detection and numerical analysis of the most efforted places in turbine blades under real working conditions, Comp. Mat. Sci. 64 (2012) 285–288.

DOI: 10.1016/j.commatsci.2012.02.048

Google Scholar

[5] T. Sadowski, P. Golewski, Experimental and numerical investigations of TBC behavior after aging, subjected to tension and bending, Sol. Sta. Phen. 216 (2014) 128-133.

DOI: 10.4028/www.scientific.net/ssp.216.128

Google Scholar

[6] F. Cernuschia, L. Lorenzonia, S. Capelli, C. Guardamagnaa, M. Kargerb, R. Vaßenb, K. Von Niessen, N. Markocsand, J. Menueye, C. Giolli, Solid particle erosion of thermal spray and physical vapour deposition thermal barrier coatings, Wear 271 (2011).

DOI: 10.1016/j.wear.2011.06.013

Google Scholar

[7] X. Chen, M. Y. He, I. Spitsberg, N. A. Fleck, J. W. Hutchinson, A. G. Evans, Mechanisms governing the high temperature erosion of thermal barrier coatings, Wear 256 (2004) 735–746.

DOI: 10.1016/s0043-1648(03)00446-0

Google Scholar

[8] X. Chen, J. W. Hutchinson, Particle impact on metal substrates with application to foreign object damage to aircraft engines, Jour. of the Mech. and Phy. of Sol. 50 (2002) 2669–2690.

DOI: 10.1016/s0022-5096(02)00022-4

Google Scholar

[9] M. W. Crowell, T. A. Schaedler, B. H. Hazel, D. G. Konitzer, R. M. McMeeking, A. G. Evans, Experiments and numerical simulations of single particle foreign object damage-like impacts of thermal barrier coatings, Inter. Jour. of Imp. Eng. 48 (2012).

DOI: 10.1016/j.ijimpeng.2011.10.006

Google Scholar

[10] J. R. Nicholls, M. J. Deakin, D. S. Rickerby, A comparison between the erosion behaviour of thermal spray and electron beam physical vapour deposition thermal barrier coatings, Wear 233–235 (1999) 352–361.

DOI: 10.1016/s0043-1648(99)00214-8

Google Scholar

[11] R. J. L. Steenbakker, R. G. Wellman, J. R. Nicholas, Erosion of gadolinia doped EB-PVD TBCs, Surf. Coat. Tech. 201 (2006) 2140–2146.

DOI: 10.1016/j.surfcoat.2006.03.022

Google Scholar

[12] T. Strangman, D. Raybould, A. Jameel, W. Baker, Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine airfoils, Surf. Coat. Tech. 202 (2007) 658–664.

DOI: 10.1016/j.surfcoat.2007.06.067

Google Scholar

[13] R. G. Wellman, M. J. Deakin, J. R. Nicholls, The effect of TBC morphology and aging on the erosion rate of EB-PVD TBCs, Trib. Inter. 38 (2005) 798–804.

DOI: 10.1016/j.triboint.2005.02.008

Google Scholar

[14] R. G. Wellman, J. R. Nicholas, Erosion, corrosion and erosion–corrosion of EB PVD thermal barrier coatings, Trib. Inter. 41 (2008) 657–662.

DOI: 10.1016/j.triboint.2007.10.004

Google Scholar

[15] X. Chen, R. Wang, N. Yao, A. G. Evans, J. W. Hutchinson, R. W. Bruce, Foreign object damage in a thermal barrier system: mechanisms and Simulations, Mat. Sci. Eng. A 352 (2003) 221-231.

DOI: 10.1016/s0921-5093(02)00905-x

Google Scholar

[16] S. Masoud Marandi, K. Rahmani, M. Tajdari, Foreign object damage on the leading edge of gas turbine blades, Aero. Sci. Tech. 33 (2014) 65–75.

DOI: 10.1016/j.ast.2014.01.001

Google Scholar

[17] T. J. Carter, Common failures in gas turbine blades, Eng. Fail. Anal. 12 (2005) 237–247.

Google Scholar

[18] C. Zhou, N. Wang, H. Xu, Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings, Mat. Sci. Eng. A 452–453 (2007) 569–574.

DOI: 10.1016/j.msea.2006.11.027

Google Scholar

[19] T. Sadowski, S. Samborski, Development of damage state in porous ceramics under compression. Comput. Mat. Sci. 43 (2008) 75-81.

DOI: 10.1016/j.commatsci.2007.07.041

Google Scholar

[20] T. Sadowski, S. Hardy, E. Postek, Prediction of the mechanical response of polycrystalline ceramics containing metallic inter-granular layers under uniaxial tension. Comput. Mat. Sci. 34 (2005) 46-63.

DOI: 10.1016/j.commatsci.2004.10.005

Google Scholar

[21] T. Sadowski, S. Hardy, E. Postek, A new model for the time-dependent behaviour of polycrystalline ceramic materials with metallic inter-granular layers under tension. Mat. Sci. Eng. A 424 (2006) 230-238.

DOI: 10.1016/j.msea.2006.03.004

Google Scholar

[22] T. Sadowski, E. Postek, C. Denis, Stress distribution due to discontinuities in polycrystalline ceramics containing metallic inter-granular layers. Comput. Mat. Sci. 39 (2007) 230-236.

DOI: 10.1016/j.commatsci.2006.03.022

Google Scholar

[23] T. Sadowski, L. Marsavina, Multiscale modelling of two-phase ceramic matrix composites Comput. Mat. Sci. 50 (2011) 1336-1346.

DOI: 10.1016/j.commatsci.2010.04.011

Google Scholar

[24] T. Sadowski, Gradual degradation of two-phase ceramic composites under compression, Comput. Mat. Sci. 64 (2012) 209-211.

DOI: 10.1016/j.commatsci.2012.01.034

Google Scholar

[25] E. Postek, T. Sadowski, Assessing the Influence of Porosity in the Deformation of Metal-Ceramic Composites, Comp. Interfaces 18 (2011) 57-76.

DOI: 10.1163/092764410x554049

Google Scholar

[26] T. Sadowski, A. Neubrand, Estimation of the crack length after thermal shock in FGM strip. Int. J. Fract. 127 (2004) 135-140.

DOI: 10.1023/b:frac.0000035087.34082.88

Google Scholar

[27] V. Petrova, T. Sadowski, Theoretical modeling and analysis of thermal fracture of semi-infinite functionally graded materials with edge cracks, Meccanica 49 (2014) 2617-2633.

DOI: 10.1007/s11012-014-9941-x

Google Scholar

[28] T. Sadowski, K. Nakonieczny, Thermal shock response of FGM cylindrical plates with various grading patterns. Comput. Mat. Sci. 43 (2008) 171-178.

DOI: 10.1016/j.commatsci.2007.07.051

Google Scholar

[29] K. Nakonieczny, T. Sadowski, Modelling of thermal shock in composite material using a meshfree FEM. Comp. Mater. Sci. 44 (2009) 1307-1311.

DOI: 10.1016/j.commatsci.2008.08.019

Google Scholar

[30] T. Sadowski, S. Ataya, K. Nakonieczny, Thermal analysis of layered FGM cylindrical plates subjected to sudden cooling process at one side – comparison of two applied methods for problem solution. Comp. Mater. Sci. 45 (2009) 624-632.

DOI: 10.1016/j.commatsci.2008.07.011

Google Scholar

[31] M. Birsan, T. Sadowski, D. Pietras, Thermoelastic deformations of cylindrical multi-layered shells using a direct approach, Journal of Thermal Stress 36 (2013) 1-38.

DOI: 10.1080/01495739.2013.764802

Google Scholar

[32] T. Sadowski, M. Birsan, D. Pietras, Numerical analysis of multilayered and FGM structural elements under mechanical and thermal loads. Comparison of the finite elements and analytical models, Arch. of Civil and Mechanical Eng. 15 (2015).

DOI: 10.1016/j.acme.2014.09.004

Google Scholar

[33] G. Golewski, P. Golewski, T. Sadowski, Numerical modeling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method, Comput. Mat. Sci. 62 (2012) 75-78.

DOI: 10.1016/j.commatsci.2012.05.009

Google Scholar

[34] T. Sadowski, B. Pankowski, Numerical modelling of two-phase ceramic composite response under uniaxial loading, Composite Structures 143 (2016) 388-394.

DOI: 10.1016/j.compstruct.2016.02.022

Google Scholar