[1]
D.B. Spencer, R. Mehrabian, M.C. Flemings, Rheological behavior of Sn-15Pb in the crystallization range, Metal. Trans. 3 (1972) 1925-(1932).
DOI: 10.1007/bf02642580
Google Scholar
[2]
M.C. Flemings, Behavior of metal alloys in the semi-solid state, Metal. Trans. 22A (1991) 957-981.
Google Scholar
[3]
Q. Chen, S.J. Luo, Z.D. Zhao, Microstructural evolution of previously deformed AZ91D magnesium alloyduring partial remelting, J. Alloys Compd. 447 (2009) 726-731.
DOI: 10.1016/j.jallcom.2008.10.106
Google Scholar
[4]
Z. Fan. Semisolid metal processing, Int. Mater. Rev. 47 (2002) 49-85.
Google Scholar
[5]
G.Q. Sun, Technology and application of semi-solid processing. Chin. J. Rare Met. 27(2003) 382-384.
Google Scholar
[6]
K.P. Young, C.P. Kyonka, J.A. Courtois, U.S. Patent 4415374 (1983).
Google Scholar
[7]
S.B. Hassas-Irani, A. Zarei-Hanzaki, B. Bazaz, A.A. Roostaei, Microstructure evolution and semi-solid deformation behavior of an A356 aluminum alloy processed by strain induced melt activated method, Mater. Design. 46 (2013) 579-587.
DOI: 10.1016/j.matdes.2012.10.041
Google Scholar
[8]
M. Alipour, M. Emamy, Effects of Al-5Ti-1B on the structure and hardness of a super high strength aluminum alloy produced by strain-induced melt activation process, Mater. Design. 32 (2011) 4485-4492.
DOI: 10.1016/j.matdes.2011.03.044
Google Scholar
[9]
J.F. Jiang, Y. Wang, Z. M Du, S.J. Luo, Microstructure and properties of AZ80 alloy semisolid billets fabricated by new strain induced melt activated method, T. Nonferr. Metal. Soc. 22 (2012) s422-s427.
DOI: 10.1016/s1003-6326(12)61741-5
Google Scholar
[10]
F.N. Yan, L.Q. Sun, Y. Gong, Y. Hao, Steady state rheological characteristic of semisolid magnesium alloy, J. Mater. Sci. Technol. 23 (2007) 637-640.
Google Scholar
[11]
M.B. Yang, H.J. Hu, B. Dai, L.W. Tang, Compression behaviour of semisolid YL112 die casting aluminium alloy following isothermal heat treatment, Int. J. Cast. 20 (2007) 198-201.
DOI: 10.1179/136404607x249770
Google Scholar
[12]
M.B. Yang, H.J. Hu, Dai B, L.W. Tang, Effects of deformation temperature and rate on compressive deformation behavior of Y112 die cast aluminum alloy in semi-solid, T. Nonferr. Metal. Soc. 16 (2006) 1323-1326.
Google Scholar
[13]
J. Y, Li, S. Sugiyama, Y. Jun, Microstructural evolution and flow stress of semi-solid type 304 stainless steel. Original Research Article. J. Mater. Process. Technol. 161 (2005) 396-406.
DOI: 10.1016/j.jmatprotec.2004.07.063
Google Scholar
[14]
A. RASSILI, H.V. ATKINSON. A review on steel thixoforming. Original Research Article. T. Nonferr. Metal. Soc. 20 (2010) s1048-s1054.
DOI: 10.1016/s1003-6326(10)60629-2
Google Scholar
[15]
C.G. Kang, S.M. Lee, Effect of solid fraction and pressure on microstructure and mechanical properties and reduction in liquid segregation in the thixo-die-casting process with Al-7 Pct Si Alloy, Met. Mat. T. A. 39 (2008) 1213-1224.
DOI: 10.1007/s11661-008-9465-x
Google Scholar
[16]
Y.F. Wu, G.Y. Kim, I.E. Anderson, T.A. Lograsso, Experimental study on viscosity and phase segregation of Al-Si powders in microsemisolid powder forming, J. Manuf. Sci. 132 (2010) 011003, 1-7.
DOI: 10.1115/1.4000636
Google Scholar
[17]
J.G. Li, Y.L. Kang, A.M. Zhao, Microstructure evolution of high carbon (C>1%) tool steel during compression, Chin. J. Mater. Res. 17 (2003) 643-648.
Google Scholar
[18]
H. Marcin, G. Mirosław, Mechanical behaviour of C45 Grade steel deformed in semi-solid state, Procedia. Eng. 10 (2011) 2353-2362.
DOI: 10.1016/j.proeng.2011.04.388
Google Scholar
[19]
H. Marcin, G. Miroslaw, Modeling of strain-stress relationship for carbon steel deformed at temperature exceeding hot rolling range, J. Eng. Mater. 133 (2011) 021008, 1-7.
DOI: 10.1115/1.4003106
Google Scholar
[20]
P. Maciol, W. Zalecki, R. Kuziak, Results of experimental investigations of tool steel during forming in semi-solid state, Int. J. Mater. Form. 3 (2010) 759-762.
DOI: 10.1007/s12289-010-0881-2
Google Scholar
[21]
J. Wang, D.H. Lu, H. Xiao, R.F. Zhou, R. Zhou, L.B. Wu, Effect of rolling-remelting SIMA process on semi-solid microstructure of ZCuSn10 alloy, Sol. St. Phen. 217-218 (2015) 418-425.
DOI: 10.4028/www.scientific.net/ssp.217-218.418
Google Scholar
[22]
J. Wang, H. Xiao, L.B. Wu, D.H. Lu, R.F. Zhou, R. Zhou, Study of rolling-remelting SIMA process for preparing the semi-solid billet of ZCuSn10 alloy, Acta Metall. Sin. 5 (2015) 567-574.
DOI: 10.4028/www.scientific.net/ssp.217-218.418
Google Scholar
[23]
V. Favier, H. V. Atkinson, Micromechanical modelling of the elasto-viscoplastic response of metallic alloys under rapid compression in the semi-solid state, Acta Mater., 59 (2011) 1271-1280.
DOI: 10.1016/j.actamat.2010.10.059
Google Scholar
[24]
T. Y. Liu, H. V. Atkinson, P. Kapranos, D. H. Kirkwood, S.C. Hogg, Rapid compression of aluminum alloys and its relationship to thixoformability, Metall. Mater. Trans. A. 34 (2003) 1545-1554.
DOI: 10.1007/s11661-003-0266-y
Google Scholar
[25]
D. Liu, H. V. Atkinson, H. Jones, Thermodynamic prediction of thixoformability in alloys based on the Al–Si–Cu and Al–Si–Cu–Mg systems, Acta Mater. 53 (2005) 3807-3819.
DOI: 10.1016/j.actamat.2005.04.028
Google Scholar
[26]
O. Ludwig, M. DiMichiel, P. Falus, L. Salvo, M. Suery. In: 8th international S2P conference on semi-solid processing of alloys and composites, limassol, cyprus, NADCA, Wheeling, IL, 21–23 September, 2004 [CD-ROM].
Google Scholar
[27]
E. Tzimas, A. Zavaliangos, Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content, Acta Mater. 47 (1999) 517-528.
DOI: 10.1016/s1359-6454(98)00356-5
Google Scholar
[28]
J. Wang, H. Xiao, L.B. Wu, H. L. Hu, D.H. Lu, R.F. Zhou, R. Zhou, Deformation characteristic of semi-solid ZCuSn10 copper alloy during isothermal compression, Rare Met. 5 (2005).
DOI: 10.1007/s12598-015-0479-4
Google Scholar