Deformation Behavior of Semi-Solid ZCuSn10P1 Copper Alloy during Isothermal Compression

Article Preview

Abstract:

The isothermal compression tests of semi-solid ZCuSn10P1 alloy by strain induced melt activation (SIMA) process are carried out by Gleeble-1500 thermo-mechanical simulator, and the same tests are finished to samples of as-cast ZCuSn10P1 alloy. The deformation temperature respectively is 910°C, 920°C and 930°C, and the strain respectively is 0.4 and 0.6, the strain rate is 0.5s-1, 1s-1 and 10s-1. The experimental results indicate that the deformation resistance of semi-solid ZCuSn10P1 copper alloy with smaller, more uniform and rounder solid grain is about half of the as-cast ZCuSn10P1 copper alloy. The deformation resistance of ZCuSn10P1 alloy by SIMA process decreases with the deformation temperature increasing, and the deformation resistance increases with the strain rate increasing.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 256)

Pages:

31-38

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.B. Spencer, R. Mehrabian, M.C. Flemings, Rheological behavior of Sn-15Pb in the crystallization range, Metal. Trans. 3 (1972) 1925-(1932).

DOI: 10.1007/bf02642580

Google Scholar

[2] M.C. Flemings, Behavior of metal alloys in the semi-solid state, Metal. Trans. 22A (1991) 957-981.

Google Scholar

[3] Q. Chen, S.J. Luo, Z.D. Zhao, Microstructural evolution of previously deformed AZ91D magnesium alloyduring partial remelting, J. Alloys Compd. 447 (2009) 726-731.

DOI: 10.1016/j.jallcom.2008.10.106

Google Scholar

[4] Z. Fan. Semisolid metal processing, Int. Mater. Rev. 47 (2002) 49-85.

Google Scholar

[5] G.Q. Sun, Technology and application of semi-solid processing. Chin. J. Rare Met. 27(2003) 382-384.

Google Scholar

[6] K.P. Young, C.P. Kyonka, J.A. Courtois, U.S. Patent 4415374 (1983).

Google Scholar

[7] S.B. Hassas-Irani, A. Zarei-Hanzaki, B. Bazaz, A.A. Roostaei, Microstructure evolution and semi-solid deformation behavior of an A356 aluminum alloy processed by strain induced melt activated method, Mater. Design. 46 (2013) 579-587.

DOI: 10.1016/j.matdes.2012.10.041

Google Scholar

[8] M. Alipour, M. Emamy, Effects of Al-5Ti-1B on the structure and hardness of a super high strength aluminum alloy produced by strain-induced melt activation process, Mater. Design. 32 (2011) 4485-4492.

DOI: 10.1016/j.matdes.2011.03.044

Google Scholar

[9] J.F. Jiang, Y. Wang, Z. M Du, S.J. Luo, Microstructure and properties of AZ80 alloy semisolid billets fabricated by new strain induced melt activated method, T. Nonferr. Metal. Soc. 22 (2012) s422-s427.

DOI: 10.1016/s1003-6326(12)61741-5

Google Scholar

[10] F.N. Yan, L.Q. Sun, Y. Gong, Y. Hao, Steady state rheological characteristic of semisolid magnesium alloy, J. Mater. Sci. Technol. 23 (2007) 637-640.

Google Scholar

[11] M.B. Yang, H.J. Hu, B. Dai, L.W. Tang, Compression behaviour of semisolid YL112 die casting aluminium alloy following isothermal heat treatment, Int. J. Cast. 20 (2007) 198-201.

DOI: 10.1179/136404607x249770

Google Scholar

[12] M.B. Yang, H.J. Hu, Dai B, L.W. Tang, Effects of deformation temperature and rate on compressive deformation behavior of Y112 die cast aluminum alloy in semi-solid, T. Nonferr. Metal. Soc. 16 (2006) 1323-1326.

Google Scholar

[13] J. Y, Li, S. Sugiyama, Y. Jun, Microstructural evolution and flow stress of semi-solid type 304 stainless steel. Original Research Article. J. Mater. Process. Technol. 161 (2005) 396-406.

DOI: 10.1016/j.jmatprotec.2004.07.063

Google Scholar

[14] A. RASSILI, H.V. ATKINSON. A review on steel thixoforming. Original Research Article. T. Nonferr. Metal. Soc. 20 (2010) s1048-s1054.

DOI: 10.1016/s1003-6326(10)60629-2

Google Scholar

[15] C.G. Kang, S.M. Lee, Effect of solid fraction and pressure on microstructure and mechanical properties and reduction in liquid segregation in the thixo-die-casting process with Al-7 Pct Si Alloy, Met. Mat. T. A. 39 (2008) 1213-1224.

DOI: 10.1007/s11661-008-9465-x

Google Scholar

[16] Y.F. Wu, G.Y. Kim, I.E. Anderson, T.A. Lograsso, Experimental study on viscosity and phase segregation of Al-Si powders in microsemisolid powder forming, J. Manuf. Sci. 132 (2010) 011003, 1-7.

DOI: 10.1115/1.4000636

Google Scholar

[17] J.G. Li, Y.L. Kang, A.M. Zhao, Microstructure evolution of high carbon (C>1%) tool steel during compression, Chin. J. Mater. Res. 17 (2003) 643-648.

Google Scholar

[18] H. Marcin, G. Mirosław, Mechanical behaviour of C45 Grade steel deformed in semi-solid state, Procedia. Eng. 10 (2011) 2353-2362.

DOI: 10.1016/j.proeng.2011.04.388

Google Scholar

[19] H. Marcin, G. Miroslaw, Modeling of strain-stress relationship for carbon steel deformed at temperature exceeding hot rolling range, J. Eng. Mater. 133 (2011) 021008, 1-7.

DOI: 10.1115/1.4003106

Google Scholar

[20] P. Maciol, W. Zalecki, R. Kuziak, Results of experimental investigations of tool steel during forming in semi-solid state, Int. J. Mater. Form. 3 (2010) 759-762.

DOI: 10.1007/s12289-010-0881-2

Google Scholar

[21] J. Wang, D.H. Lu, H. Xiao, R.F. Zhou, R. Zhou, L.B. Wu, Effect of rolling-remelting SIMA process on semi-solid microstructure of ZCuSn10 alloy, Sol. St. Phen. 217-218 (2015) 418-425.

DOI: 10.4028/www.scientific.net/ssp.217-218.418

Google Scholar

[22] J. Wang, H. Xiao, L.B. Wu, D.H. Lu, R.F. Zhou, R. Zhou, Study of rolling-remelting SIMA process for preparing the semi-solid billet of ZCuSn10 alloy, Acta Metall. Sin. 5 (2015) 567-574.

DOI: 10.4028/www.scientific.net/ssp.217-218.418

Google Scholar

[23] V. Favier, H. V. Atkinson, Micromechanical modelling of the elasto-viscoplastic response of metallic alloys under rapid compression in the semi-solid state, Acta Mater., 59 (2011) 1271-1280.

DOI: 10.1016/j.actamat.2010.10.059

Google Scholar

[24] T. Y. Liu, H. V. Atkinson, P. Kapranos, D. H. Kirkwood, S.C. Hogg, Rapid compression of aluminum alloys and its relationship to thixoformability, Metall. Mater. Trans. A. 34 (2003) 1545-1554.

DOI: 10.1007/s11661-003-0266-y

Google Scholar

[25] D. Liu, H. V. Atkinson, H. Jones, Thermodynamic prediction of thixoformability in alloys based on the Al–Si–Cu and Al–Si–Cu–Mg systems, Acta Mater. 53 (2005) 3807-3819.

DOI: 10.1016/j.actamat.2005.04.028

Google Scholar

[26] O. Ludwig, M. DiMichiel, P. Falus, L. Salvo, M. Suery. In: 8th international S2P conference on semi-solid processing of alloys and composites, limassol, cyprus, NADCA, Wheeling, IL, 21–23 September, 2004 [CD-ROM].

Google Scholar

[27] E. Tzimas, A. Zavaliangos, Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content, Acta Mater. 47 (1999) 517-528.

DOI: 10.1016/s1359-6454(98)00356-5

Google Scholar

[28] J. Wang, H. Xiao, L.B. Wu, H. L. Hu, D.H. Lu, R.F. Zhou, R. Zhou, Deformation characteristic of semi-solid ZCuSn10 copper alloy during isothermal compression, Rare Met. 5 (2005).

DOI: 10.1007/s12598-015-0479-4

Google Scholar