Effect of Globular Microstructure on Cavitation Erosion Resistance of Aluminium Alloys

Article Preview

Abstract:

In this paper the effect of globular microstructure on the cavitation erosion resistance was assessed and compared to that of conventional dendritic one. Three different wrought aluminum alloys in as-cast conditions were investigated. The samples were completely characterized by metallographic analyses and microhardness measurements. Cavitation erosion tests were performed according to ASTM G 32 standard. The volume loss was evaluated during the test by periodical interruptions. It was identified the damaging mechanism in case of both dendritic and semisolid microstructure. It was also found that the globular microstructure increases the cavitation erosion resistance only for one of the studied alloys.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 256)

Pages:

51-57

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.R. Davis, Corrosion of Aluminum and Aluminum Alloys, ASM International, Materials Park, (1999).

Google Scholar

[2] S. Vaidya and C.M. Preece, Cavitation Erosion of Age-Hardenable Aluminum Alloys, Metall. Trans. A. 9 (1978) 299-307.

DOI: 10.1007/bf02646379

Google Scholar

[3] B. Dybowski, B., Szala, M., Kiełbus, T. Hejwowski, Microstructural phenomena occurring during early stages of cavitation erosion of Al-Si aluminium casting alloys, Solid State Phenom. 227 (2015) 255-258.

DOI: 10.4028/www.scientific.net/ssp.227.255

Google Scholar

[4] W.J. Tomlinson, S.J. Matthews, Cavitation erosion of aluminium alloys, J. of Mater. Sci. 29- 4 (1994) 1101-1108.

Google Scholar

[5] B.C.S. Rao, D.H. Buckley, Erosion of aluminum 6061-T6 under cavitation attack in mineral oil and water, Wear 105-2 (1985) 171-182.

DOI: 10.1016/0043-1648(85)90023-7

Google Scholar

[6] X.Y. Lia, Y.G. Yan, L. Ma, Z.M. Xu, J.G. Li, Cavitation erosion and corrosion behavior of copper-manganese-aluminum alloy weldment, Mat. Sci. Eng. A - Struct. 382-1-2 (2004) 82-89.

DOI: 10.1016/j.msea.2004.04.032

Google Scholar

[7] H.G. Feller, Y. Kharrazi, Cavitation erosion of metals and alloys, Wear 93- 3 (1984) 249-260.

DOI: 10.1016/0043-1648(84)90199-6

Google Scholar

[8] A. Karimi, J.L. Martin, Cavitation Erosion of Materials. Int. Met. Rev. 31-1 (1986) 1-26.

Google Scholar

[9] M. Mlkvik, R. Olšiak, B. Knížat J. Jedelský, Character of the cavitation erosion on selected metallic materials, EPJ Web of Conf. 67, 02076 (2014).

DOI: 10.1051/epjconf/20146702076

Google Scholar

[10] M.C. Flemings, R.A., Martinez, Principles of microstructural formation in semi-solid metal processing. Solid State Phenom. 116-117 (2006) 1-8.

DOI: 10.4028/www.scientific.net/ssp.116-117.1

Google Scholar

[11] A. Pola, L. Montesano, M. Gelfi, R. Roberti, Fracture toughness and corrosion resistance of semisolid AlSi5 alloy, AIP Conference Proceedings 1353- 1 (2011) 1051-1056.

DOI: 10.1063/1.3589655

Google Scholar

[12] K.B. Nie, X.J. Wang, K. Wu, L. Xu, M.Y. Zheng, X.S. Hu, Processing, microstructure and mechanical properties of magnesium matrix nanocomposites fabricated by semisolid stirring assisted ultrasonic vibration, J. Alloy Compd 509-35 (2011, 8664–8669.

DOI: 10.1016/j.jallcom.2011.06.091

Google Scholar

[13] A. Arrighini, M. Gelfi, A. Pola and R. Roberti, Effect of ultrasound treatment of AlSi5 liquid alloy on corrosion resistance, Materials and Corrosion 61-3 (2010) 218-221.

DOI: 10.1002/maco.200905303

Google Scholar

[14] G. Gottardi, A. Pola, G.M. La Vecchia, Solid fraction determination via DSC analysis, Metall. Ital. 5 (2015) 11-16.

Google Scholar

[15] A. Pola, A. Arrighini, R. Roberti, Effect of ultrasounds treatment on alloys for semisolid application, Solid State Phenom. 141-143 (2006) 481-486.

DOI: 10.4028/www.scientific.net/ssp.141-143.481

Google Scholar

[16] G. I. Eskin, D. G. Eskin, Ultrasonic Treatment of Light Alloy Melts, Taylor & Francis Group, NW, (2014).

DOI: 10.1201/b17270

Google Scholar

[17] AFNOR NF A04-503: 1988 Semi-products made from aluminium, copper, nickel and their alloys. Determination of grain size. Aluminium and aluminium alloys.

Google Scholar

[18] ASTM G 32 standard. Standard Test Method for Cavitation Erosion Using Vibratory Apparatus.

Google Scholar

[19] S. Chayong, H.V. Atkinson, P. Kapranos, Thixoforming 7075 aluminium alloys, Mat. Sci. Eng. A-Struct 390-1-2 (2005) 3-12.

DOI: 10.1016/j.msea.2004.05.004

Google Scholar

[20] A. Pola, L. Montesano, M. Gelfi, R. Roberti, Semisolid processing of Al-Sn-Cu alloys for bearing applications. Solid State Phenom, 192-193 (2012) 56.

DOI: 10.4028/www.scientific.net/ssp.192-193.562

Google Scholar

[21] A. Pola, M. Gelfi, M. Modigell, R. Roberti, Semisolid lead-antimony alloys for cars batteries. T. Nonferr. Metal. Soc. 20-9 (2010) 1774-1779.

DOI: 10.1016/s1003-6326(09)60373-3

Google Scholar