Research on Fabrication and Semisolid Processing of Semisolid Slurries of 7075 Aluminum Matrix Composites Reinforced with Nano-Sized SiC Particles

Article Preview

Abstract:

Semisolid slurries of 7075 aluminum matrix composite reinforced with nano-sized SiC particles were fabricated by ultrasonic assisted semisolid stirring (UASS) method. Rheoforming and thixoforming of typical cylindrical parts were investigated. The results show that high-quality semisolid slurries with spheroidal solid grain of 38 µm were fabricated by UASS. The nano-sized SiC particles were dispersed uniformly due to transient cavitation and acoustic streaming of ultrasonic wave and high and controllable viscosity of semisolid slurry. Typical cylindrical composite parts with good surface quality and complete filling were rheoformed and thixoformed successfully. Ultimate tensile strength (UTS) of the rheoformed and thixoformed composite parts are enhanced due to addition of nano-sized SiC particles. However, elongation decreased as compared to those of the matrix parts. Maximum UTS of 550 MPa was achieved in the thixoformed composite part with T6 treatment. Increase of dislocation density around the reinforcement particles leads to improvement of the strength and wear resistance of the composite.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 256)

Pages:

81-87

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. B. Spencer, Rheology of liquid-solid mixtures of lead-tin [Ph. D Dissertation], Cambridge, MA, USA: Massachusetts Institute of Technology; (1971).

Google Scholar

[2] M. C. Flemings, Behavior of metal alloys in the semisolid state, Metall. Trans. B 22A(1991)957-981.

DOI: 10.1007/bf02661090

Google Scholar

[3] M. Kiuchi, R. Kopp, Mushy/Semi-Solid Metal Forming Technology-Present and Future, CIRP Ann, Manuf, Techn, 51(2002)653-670.

DOI: 10.1016/s0007-8506(07)61705-3

Google Scholar

[4] Chayong S, Atkinson HV, Kapranos P. Thixoforming 7075 aluminium alloys, Mater Sci Eng A 2005; 390: 3-12.

DOI: 10.1016/j.msea.2004.05.004

Google Scholar

[5] S. Kleiner, O. Beffort, P. J. Uggowitzer, Microstructure evolution during reheating of an extruded Mg-Al-Zn alloy into the semisolid state, Scripta Mater. 51(2004)405-410.

DOI: 10.1016/j.scriptamat.2004.05.010

Google Scholar

[6] Y. Meng, S. Sugiyama, J. Yanagimoto, Microstructural evolution during RAP process and deformation behavior of semi-solid SKD61 tool steel, J. Mater. Process. Technol. 212(2012)1731-1741.

DOI: 10.1016/j.jmatprotec.2012.04.003

Google Scholar

[7] L. N. Guan, L. Geng, H. W. Zhang, L. J. Huang, Effects of stirring parameters on microstructure and tensile properties of (ABOw+SiCp)/6061Al composites fabricated by semi-solid stirring technique, Trans. Nonferrous Met. Soc. China 21(2011).

DOI: 10.1016/s1003-6326(11)61590-2

Google Scholar

[8] K.S. Alhawari, M.Z. Omar, M.J. Ghazali, M.S. Salleh, M.N. Mohammed, Wear Properties of A356/Al2O3 Metal Matrix Composites Produced by Semisolid Processing, Procedia. Engineering 68 (2013)186-192.

DOI: 10.1016/j.proeng.2013.12.166

Google Scholar

[9] A. Mazahery, H. Abdizadeh, H. R. Baharvandi, Development of high-performance A356/nano-Al2O3 composites, Mater. Sci. Eng. A 518(2009)61-64.

DOI: 10.1016/j.msea.2009.04.014

Google Scholar

[10] J. Lan, Y. Yang, X. C. Li, Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method, Mater. Sci. Eng. A 386(2004)284-290.

DOI: 10.1016/s0921-5093(04)00936-0

Google Scholar

[11] S. A. Sajjadi, M. T. Parizi, H. R. Ezatpour, A. Sedghi, Fabrication of A356 composite reinforced with micro and nano Al2O3 particles by a developed compocasting method and study of its properties, J. Alloys Compd. 511(2012)226-231.

DOI: 10.1016/j.jallcom.2011.08.105

Google Scholar

[12] M. K. Akbari, H. R. Baharvandi, O. Mirzaee, Fabrication of nano-sized Al2O3 reinforced casting aluminum composite focusing on preparation process of reinforcement powders and evaluation of its properties, Compos Part B-Eng. 55(2013)426-432.

DOI: 10.1016/j.compositesb.2013.07.008

Google Scholar

[13] J. F. Jiang, Y. Wang, Microstructure and mechanical properties of the semisolid slurries and rheoformed component of nano-sized SiC/7075 aluminum matrix composite prepared by ultrasonic-assisted semisolid stirring, Mater. Sci. Eng. A 639(2015).

DOI: 10.1016/j.msea.2015.04.064

Google Scholar

[14] J. F. Jiang, Y. Wang, Microstructure and mechanical properties of the rheoformed cylindrical part of 7075 aluminum matrix composite reinforced with nano-sized SiC particles, Mater. Des. 79(2015)32-41.

DOI: 10.1016/j.matdes.2015.04.040

Google Scholar

[15] ASTM Standard E8M, Standard test methods for tension testing of metallic materials [Metric], ASTM International, West Conshohocken, PA, (2008).

Google Scholar

[16] C. P. Chen, C-Y A. Tsao, Semi-solid deformation of non-dendrtic structure-I. Phemonological behavior, Acta Mater. 45(1997)1955-(1968).

Google Scholar

[17] A. Mazahery, M. O. Shabani, Characterization of cast A356 alloy reinforced with nano SiC composites, Trans. Nonferrous Met. Soc. China 22(2012)275-280.

DOI: 10.1016/s1003-6326(11)61171-0

Google Scholar

[18] H. Su, W. L. Gao, Z. H. Feng, Z. Lu, Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites, Mater. Des. 36(2012)590-596.

DOI: 10.1016/j.matdes.2011.11.064

Google Scholar

[19] X.L. Zhong, W.L.E. Wong, M. Gupta, Enhancing strength and ductility of magnesium by integrating it with aluminum nanoparticles, Acta Materialia 55 (2007) 6338-6344.

DOI: 10.1016/j.actamat.2007.07.039

Google Scholar